43 research outputs found
God tilgĂŚngelighed â fĂŚlles interesse â fĂŚlles ansvar
Opsamling fra workshop pĂĽ Trafikdage 2016
Special session: God tilgĂŚngelighed â fĂŚlles interesse â fĂŚlles ansvar
Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP.
We aimed to develop an efficient, flexible and scalable approach to diagnostic genome-wide sequence analysis of genetically heterogeneous clinical presentations. Here we present G2P ( www.ebi.ac.uk/gene2phenotype ) as an online system to establish, curate and distribute datasets for diagnostic variant filtering via association of allelic requirement and mutational consequence at a defined locus with phenotypic terms, confidence level and evidence links. An extension to Ensembl Variant Effect Predictor (VEP), VEP-G2P was used to filter both disease-associated and control whole exome sequence (WES) with Developmental Disorders G2P (G2PDD; 2044 entries). VEP-G2PDD shows a sensitivity/precision of 97.3%/33% for de novo and 81.6%/22.7% for inherited pathogenic genotypes respectively. Many of the missing genotypes are likely false-positive pathogenic assignments. The expected number and discriminative features of background genotypes are defined using control WES. Using only human genetic data VEP-G2P performs well compared to other freely-available diagnostic systems and future phenotypic matching capabilities should further enhance performance
Establishment of age- and sex-adjusted reference data for hand bone mass and investigation of hand bone loss in patients with rheumatoid arthritis treated in clinical practice:an observational study from the DANBIO registry and the Copenhagen Osteoarthritis Study
BACKGROUND: Rheumatoid arthritis is characterised by progressive joint destruction and loss of periarticular bone mass. Hand bone loss (HBL) has therefore been proposed as an outcome measure for treatment efficacy. A definition of increased HBL adjusted for age- and sex-related bone loss is lacking. In this study, we aimed to: 1) establish reference values for normal hand bone mass (bone mineral density measured by digital x-ray radiogrammetry (DXR-BMD)); and 2) examine whether HBL is normalised in rheumatoid arthritis patients during treatment with tumour necrosis factor alpha inhibitors (TNFI). METHODS: DXR-BMD was measured from hand x-rays in a reference cohort (1485 men/2541 women) without arthritis randomly selected from an urban Danish population. Sex- and age-related HBL/year was estimated. DXR-BMD was measured in rheumatoid arthritis patients (nâ=â350: at start of TNFI, and ~2 years after TNFI start), of which 135 patients had three x-rays (~2 years prior to TNFI, at start of TNFI, and ~2 years after TNFI start). Individual HBL/year prior to and during TNFI was calculated and compared to reference values. RESULTS: Estimated HBL/year varied strongly with age and sex. Compared to the reference values, 75 % of 135 patients had increased HBL prior to TNFI treatment and 59 % had increased HBL during TNFI treatment (pâ=â0.17, Chi-squared). In 38 % (38/101) of patients with increased HBL, HBL was normalised during TNFI treatment, whereas 47 % (16/34) of patients with normal HBL prior to TNFI had increased HBL during TNFI treatment. In the 350 patients, increased HBL during TNFI was associated with time-averaged 28-joint disease activity score (odds ratio 1.69 (95 % Confidence Interval 1.34-2.15)/unit increase, pâ<â0.001), and patients in time-averaged remission had lower HBL than patients without remission (0.0032 vs. 0.0058 g/cm(2)/year; pâ<â0.001, Mann-Whitney). CONCLUSIONS: We established age- and sex-specific reference values for DXR-BMD in a large cohort without arthritis. HBL was increased in the majority of rheumatoid arthritis patients initiating TNFI in clinical practice, and only normalised in a minority during TNFI. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13075-016-0952-y) contains supplementary material, which is available to authorized users
EyeG2P: an automated variant filtering approach improves efficiency of diagnostic genomic testing for inherited ophthalmic disorders
BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders
Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes
<p>Abstract</p> <p>Background</p> <p>Down syndrome (DS; trisomy 21) is the most common genetic cause of mental retardation in the human population and key molecular networks dysregulated in DS are still unknown. Many different experimental techniques have been applied to analyse the effects of dosage imbalance at the molecular and phenotypical level, however, currently no integrative approach exists that attempts to extract the common information.</p> <p>Results</p> <p>We have performed a statistical meta-analysis from 45 heterogeneous publicly available DS data sets in order to identify consistent dosage effects from these studies. We identified 324 genes with significant genome-wide dosage effects, including well investigated genes like <it>SOD1</it>, <it>APP</it>, <it>RUNX1 </it>and <it>DYRK1A </it>as well as a large proportion of novel genes (N = 62). Furthermore, we characterized these genes using gene ontology, molecular interactions and promoter sequence analysis. In order to judge relevance of the 324 genes for more general cerebral pathologies we used independent publicly available microarry data from brain studies not related with DS and identified a subset of 79 genes with potential impact for neurocognitive processes. All results have been made available through a web server under <url>http://ds-geneminer.molgen.mpg.de/</url>.</p> <p>Conclusions</p> <p>Our study represents a comprehensive integrative analysis of heterogeneous data including genome-wide transcript levels in the domain of trisomy 21. The detected dosage effects build a resource for further studies of DS pathology and the development of new therapies.</p
Flagellar motor tuning - The hybrid motor in Shewanella oneidensis MR-1
Bacteria are exposed to constantly changing environments. An efficient way to navigate towards favourable conditions is flagella-mediated motility. Flagellar rotation is achieved by the bacterial flagellar motor, composed of the rotor and stator complexes which surround the rotor in a ring-like structure. As an exception among the Shewanella species, the fresh-water organism S. oneidensis MR-1 harbours two different stator complexes, the sodium-ion dependent PomAB and the proton-dependent MotAB, differentially supporting rotation of a single polar flagellum. Both PomAB and MotAB are simultaneously present and required for full speed under low sodium-ion conditions. Although tightly anchored to the cell wall, stators are constantly exchanged even during ongoing rotation. Moreover, sodium-ion and proton-dependent stators can function with the same rotor. This raises the question of how PomAB and MotAB contribute to rotation of a single flagellum and whether PomAB and MotAB coexist in the stator ring of S. oneidensis MR-1, forming a hybrid motor.
Here, I report a novel model for the dynamic adaptation of the rotor-stator configuration in response to the environmental sodium ion level in S. oneidensis MR-1. Transcriptional fusions to lucB revealed that both pomAB and motAB are concurrently transcribed. By using fluorescence microscopy, functional fusions of mCherry to the B-subunits revealed that in sharp contrast to MotB, a fraction of PomB is polarly positioned independently of the sodium-ion concentration. At low sodium-ion concentration, PomB and MotB appear to coexist in the flagellar motor. However, in the absence of PomAB, MotB is recruited to the flagellated pole independently of the sodium-ion concentration. Interestingly, induced production of PomAB displaces polar MotB from the motor and confines it to the membrane. By quantifying single sfGfp molecules fused to PomB, I could show that the number of PomB in the stator ring is reduced from nine to five complexes when cells were shifted from a high to a low sodium-ion concentration. Thus, the incorporation efficiency of PomAB is directly modified in response to the sodium-ion concentration, whereas the association of MotAB into the stator ring rather depends on the presence of PomAB. Furthermore, two auxiliary proteins, MotX and MotY, were identified and shown to be essential for functionality of both PomAB and MotAB. Localisation studies revealed that, in contrast to Vibrio MotXY are not required for recruitment of the stator complexes to the flagellated pole. Taken together, my data support the model of dynamic stator swapping to tune the flagellar motor in response to environmental conditions, e.g. the availability of sodium ions. The concurrent presence of PomB and MotB at low sodium-ion concentration suggests the existence of a hybrid motor in S. oneidensis.
Since it remains to be demonstrated whether MotAB stators are functionally incorporated in this hybrid motor, the second aim of this work was to biophysically analyse the contribution of MotAB and PomAB to motor rotation at the single cell level. To this end, a âbead assayâ and a âtethered cell assayâ were established. These set-ups required the delocalisation of the polar filament to a lateral position, the preparation of a highly specific antibody against the modified filament and, for the bead assay the attachment of polystyrene beads to the filament. While the bead assay was limited to short-term measurements, the tethered cell assay was optimised for long-term studies. The optimisation now permits a constant buffer exchange as well as the modulation of the stator complex level by an inducible promoter upstream of pomAB and motAB. Single cell analysis comparing the wild-type and the PomAB-driven motor revealed a significantly higher rotation speed for the wild-type motor at low sodium-ion concentration. Moreover, induced production of PomAB in a stator deletion background resurrected rotation speed in a stepwise manner, whereas production of MotAB in a PomAB-driven motor decreased rotation speed stepwise. These results strongly indicate that MotAB is incorporated into the force-generating PomAB-occupied stator ring, slowing down motor rotation. MotAB production in a stator deletion background did not restore rotation. However, swimming assays revealed that MotAB is sufficient to drive flagellar rotation in a subpopulation of cells, strongly suggesting that both stators are able to function together in a single motor. To clearly characterise the role of MotAB and PomAB in the hybrid motor of S. oneidensis MR-1 further biophysical studies are required. The genome wide bioinformatic analysis of all sequenced bacterial genomes revealed that dual or multiple stator complexes along with a single flagellar system are surprisingly widespread among bacterial species. Moreover, stator complex homology comparison in S. oneidensis MR-1 indicated that MotAB has recently been acquired by lateral gene transfer as a consequence of adaptation to a fresh-water environment. Thus, the flagellar motor might still be in a process of optimisation.
Collectively, I hypothesize that S. oneidensis tunes its flagellar motor by exchanging stator complexes and that stator swapping represents a common mechanism applicable to other bacteria to adapt to changing environments
Beratung als Auftrag des Pflegeversicherungsgesetzes
Schieron M, Klein I, Thormann A. Beratung als Auftrag des Pflegeversicherungsgesetzes. In: Koch-Straube U, ed. Beratung in der Pflege. 1.st ed. Bern GĂśttingen Toronto Seattle: Verlag Hans Huber; 2001: 163-173
MotX and MotY Are Required for Flagellar Rotation in Shewanella oneidensis MR-1âż â
The single polar flagellum of Shewanella oneidensis MR-1 is powered by two different stator complexes, the sodium-dependent PomAB and the proton-driven MotAB. In addition, Shewanella harbors two genes with homology to motX and motY of Vibrio species. In Vibrio, the products of these genes are crucial for sodium-dependent flagellar rotation. Resequencing of S. oneidensis MR-1 motY revealed that the gene does not harbor an authentic frameshift as was originally reported. Mutational analysis demonstrated that both MotX and MotY are critical for flagellar rotation of S. oneidensis MR-1 for both sodium- and proton-dependent stator systems but do not affect assembly of the flagellar filament. Fluorescence tagging of MotX and MotY to mCherry revealed that both proteins localize to the flagellated cell pole depending on the presence of the basal flagellar structure. Functional localization of MotX requires MotY, whereas MotY localizes independently of MotX. In contrast to the case in Vibrio, neither protein is crucial for the recruitment of the PomAB or MotAB stator complexes to the flagellated cell pole, nor do they play a major role in the stator selection process. Thus, MotX and MotY are not exclusive features of sodium-dependent flagellar systems. Furthermore, MotX and MotY in Shewanella, and possibly also in other genera, must have functions beyond the recruitment of the stator complexes