1,682 research outputs found

    Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

    Get PDF
    During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated

    A novel β-xylosidase structure from Geobacillus thermoglucosidasius:The first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds

    Get PDF
    Geobacillus thermoglucosidasiusis a thermophilic bacterium that is able to ferment both C6 and C5 sugars to produce ethanol. During growth on hemicellulose biomass, an intracellular β-xylosidase catalyses the hydrolysis of xylo-oligosaccharides to the monosaccharide xylose, which can then enter the pathways of central metabolism. The gene encoding aG. thermoglucosidasiusβ-xylosidase belonging to CAZy glycoside hydrolase family GH52 has been cloned and expressed inEscherichia coli. The recombinant enzyme has been characterized and a high-resolution (1.7 Å) crystal structure has been determined, resulting in the first reported structure of a GH52 family member. A lower resolution (2.6 Å) structure of the enzyme–substrate complex shows the positioning of the xylobiose substrate to be consistent with the proposed retaining mechanism of the family; additionally, the deep cleft of the active-site pocket, plus the proximity of the neighbouring subunit, afford an explanation for the lack of catalytic activity towards the polymer xylan. Whilst the fold of theG. thermoglucosidasiusβ-xylosidase is completely different from xylosidases in other CAZy families, the enzyme surprisingly shares structural similarities with other glycoside hydrolases, despite having no more than 13% sequence identity.</jats:p

    Observed Hemispheric Asymmetry in Stratospheric Transport Trends From 1994 to 2018

    Get PDF
    ©2020. American Geophysical Union. All Rights Reserved. Total columns of the trace gases nitric acid (HNO3) and hydrogen chloride (HCl) are sensitive to variations in the lower stratospheric age of air, a quantity that describes transport time scales in the stratosphere. Analyses of HNO3 and HCl columns from the Network for the Detection of Atmospheric Composition Change panning 77°S to 79°N have detected changes in the extratropical stratospheric transport circulation from 1994 to 2018. The HNO3 and HCl analyses combined with the age of air from a simulation using the MERRA2 reanalysis show that the Southern Hemisphere lower stratosphere has become 1 month/decade younger relative to the Northern Hemisphere, largely driven by the Southern Hemisphere transport circulation. The analyses reveal multiyear anomalies with a 5- to 7-year period driven by interactions between the circulation and the quasi-biennial oscillation in tropical winds. This hitherto unrecognized variability is large relative to hemispheric transport trends and may bias ozone trend regressions
    corecore