722 research outputs found

    Distinguishing the contribution of type 1 pili from that of other QseB-misregulated factors when QseC is absent during urinary tract infection

    Get PDF
    Urinary tract infections (UTI), primarily caused by uropathogenic Escherichia coli (UPEC), are one of the leading bacterial infections due to their high frequency and rate of recurrence. Both type 1 pilus adhesive organelles (fim) and the QseC sensor kinase have been implicated in UPEC virulence during UTI and have been individually reported to be promising drug targets. Deletion of qseC leads to pleiotropic effects due to unregulated activation of the cognate response regulator QseB, influencing conserved metabolic processes and diminishing expression of virulence genes, including type 1 pili. Here, we discern the type 1 pilus-dependent and -independent effects that contribute to the virulence attenuation of a UPEC qseC deletion mutant in a murine model of experimental UTI. We show that although a ΔqseC mutant restored for type 1 pilus expression regains the ability to colonize the host and initiate acute infection up to 16 h postinfection, it is rapidly outcompeted during acute infection when coinoculated with a wild-type strain. As a result, this strain has a diminished capacity to establish chronic infection. A prophylactic oral dose of a FimH small-molecular-weight antagonist (ZFH-02056) further reduced the ability of the qseC mutant to establish chronic infection. Thus, loss of QseC significantly enhances the efficacy of ZFH-02056. Collectively, our work indicates that type 1 pili and QseC become critical in different infection stages, and that dual targeting of these factors has an additive effect on ablating UPEC virulence

    Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus.

    Get PDF
    BACKGROUND: Receptor-like kinases are well-known to play key roles in disease resistance. Among them, the Wall-associated kinases (WAKs) have been shown to be positive regulators of fungal disease resistance in several plant species. WAK genes are often transcriptionally regulated during infection but the pathways involved in this regulation are not known. In rice, the OsWAK gene family is significantly amplified compared to Arabidopsis. The possibility that several WAKs participate in different ways to basal defense has not been addressed. Moreover, the direct requirement of rice OSWAK genes in regulating defense has not been explored. RESULTS: Here we show using rice (Oryza sativa) loss-of-function mutants of four selected OsWAK genes, that individual OsWAKs are required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. While OsWAK14, OsWAK91 and OsWAK92 positively regulate quantitative resistance, OsWAK112d is a negative regulator of blast resistance. In addition, we show that the very early transcriptional regulation of the rice OsWAK genes is triggered by chitin and is partially under the control of the chitin receptor CEBiP. Finally, we show that OsWAK91 is required for H2O2 production and sufficient to enhance defense gene expression during infection. CONCLUSIONS: We conclude that the rice OsWAK genes studied are part of basal defense response, potentially mediated by chitin from fungal cell walls. This work also shows that some OsWAKs, like OsWAK112d, may act as negative regulators of disease resistance

    Escherichia coli from urine of female patients with urinary tract infections is competent for intracellular bacterial community formation

    Get PDF
    Nearly 50% of women experience at least one urinary tract infection (UTI) in their lifetime. Studies with mice have revealed that uropathogenic Escherichia coli (UPEC) isolates invade superficial umbrella cells that line the bladder, allowing them to find a safe haven and subvert clearance by innate host responses. Rapid intracellular replication results in the formation of distinctive intracellular bacterial communities (IBCs). In this study, we evaluated whether UPEC strains cultured from the urine of women and classified as causing acute cystitis, recurrent cystitis, asymptomatic bacteriuria, or pyelonephritis could progress through the IBC cascade in a well-characterized mouse model of cystitis. Of 18 UPEC isolates collected from women, 15 formed IBCs. Variations in the size, number, and kinetics of IBC formation were observed with strains isolated from women with different clinical syndromes. Two of the three isolates that did not form IBCs when inoculated alone were able to do so when coinoculated with an isolate that was capable of generating IBCs. The mixed infections dramatically altered the behavior of the coinfecting bacteria relative to their behavior in a single infection. The study also showed that mice with five different genetic backgrounds can support IBC formation. Although UPEC isolates differ genetically in their virulence factors, the majority of UPEC isolates from different types of UTI proceed through the IBC pathway, confirming the generality of IBCs in UTI pathogenesis in mice

    Bacterial Community Legacy Effects Following the Agia Zoni II Oil-Spill, Greece

    Get PDF
    In September 2017 the Agia Zoni II sank in the Saronic Gulf, Greece, releasing approximately 500 tonnes of heavy fuel oil, contaminating the Salamina and Athens coastlines. Effects of the spill, and remediation efforts, on sediment microbial communities were quantified over the following 7 months. Five days post-spill, the concentration of measured hydrocarbons within surface sediments of contaminated beaches was 1,093–3,773 μg g–1 dry sediment (91% alkanes and 9% polycyclic aromatic hydrocarbons), but measured hydrocarbons decreased rapidly after extensive clean-up operations. Bacterial genera known to contain oil-degrading species increased in abundance, including Alcanivorax, Cycloclasticus, Oleibacter, Oleiphilus, and Thalassolituus, and the species Marinobacter hydrocarbonoclasticus from approximately 0.02 to >32% (collectively) of the total bacterial community. Abundance of genera with known hydrocarbon-degraders then decreased 1 month after clean-up. However, a legacy effect was observed within the bacterial community, whereby Alcanivorax and Cycloclasticus persisted for several months after the oil spill in formerly contaminated sites. This study is the first to evaluate the effect of the Agia Zoni II oil-spill on microbial communities in an oligotrophic sea, where in situ oil-spill studies are rare. The results aid the advancement of post-spill monitoring models, which can predict the capability of environments to naturally attenuate oil

    Detecting Selection in the HIV-1 Genome during Sexual Transmission Events

    Full text link
    Little is known about whether and how variation in the HIV-1 genome affects its transmissibility. Assessing which genomic features of HIV-1 are under positive or negative selection during transmission is challenging, because very few virus particles are typically transmitted, and random genetic drift can dilute genetic signals in the recipient virus population. We analyzed 30 transmitter-recipient pairs from the Zurich Primary HIV Infection Study and the Swiss HIV Cohort Study using near full-length HIV-1 genomes. We developed a new statistical test to detect selection during transmission, called Selection Test in Transmission (SeTesT), based on comparing the transmitter and recipient virus population and accounting for the transmission bottleneck. We performed extensive simulations and found that sensitivity of detecting selection during transmission is limited by the strong population bottleneck of few transmitted virions. When pooling individual test results across patients, we found two candidate HIV-1 genomic features for affecting transmission, namely amino acid positions 3 and 18 of Vpu, which were significant before but not after correction for multiple testing. In summary, SeTesT provides a general framework for detecting selection based on genomic sequencing data of transmitted viruses. Our study shows that a higher number of transmitter-recipient pairs is required to improve sensitivity of detecting selection

    Influenza vaccination of healthcare workers in acute-care hospitals: a case-control study of its effect on hospital-acquired influenza among patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In acute-care hospitals, no evidence of a protective effect of healthcare worker (HCW) vaccination on hospital-acquired influenza (HAI) in patients has been documented. Our study objective was to ascertain the effectiveness of influenza vaccination of HCW on HAI among patients.</p> <p>Methods</p> <p>A nested case-control investigation was implemented in a prospective surveillance study of influenza-like illness (ILI) in a tertiary acute-care university hospital. Cases were patients with virologically-confirmed influenza occurring ≥ 72 h after admission, and controls were patients with ILI presenting during hospitalisation with negative influenza results after nasal swab testing. Four controls per case, matched per influenza season (2004-05, 2005-06 and 2006-07), were randomly selected. Univariate and multivariate conditional logistic regression models were fitted to assess factors associated with HAI among patients.</p> <p>Results</p> <p>In total, among 55 patients analysed, 11 (20%) had laboratory-confirmed HAI. The median HCW vaccination rate in the units was 36%. The median proportion of vaccinated HCW in these units was 11.5% for cases vs. 36.1% for the controls (<it>P </it>= 0.11); 2 (20%) cases and 21 (48%) controls were vaccinated against influenza in the current season (<it>P </it>= 0.16). The proportion of ≥ 35% vaccinated HCW in short-stay units appeared to protect against HAI among patients (odds ratio = 0.07; 95% confidence interval 0.005-0.98), independently of patient age, influenza season and potential influenza source in the units.</p> <p>Conclusions</p> <p>Our observational study indicates a shielding effect of more than 35% of vaccinated HCW on HAI among patients in acute-care units. Investigations, such as controlled clinical trials, are needed to validate the benefits of HCW vaccination on HAI incidence in patients.</p

    Influence of biodiesel on base oil oxidation as measured by FTICR mass spectrometry

    Get PDF
    Internal combustion engine lubricants are subject to thermo-oxidative degradation during use and must be designed to withstand oxidation in order to extend their useful life. Understanding the complex chemical process of thermo-oxidative degradation is essential to designing higher performing engine lubricants. In this study base oil samples composed of a Group II base oil, doped with three different levels of biodiesel (B0, B15, and B100), were subjected to benchtop oxidation testing of up to 168 h, which mimics the conditions experienced in an internal combustion engine. The resulting samples were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for ultrahigh-resolution characterization to monitor oxidation as a function of time and biofuel content. Both negative-ion nanoelectrospray ionization and positive-ion atmospheric pressure photoionization were utilized. Most of the oxidation products were found to be polyoxygenated species containing 1–8 oxygen atoms, with the number of detected species increasing with oxidation time. Assessment of the maximum carbon number of protonated classes indicated the involvement of oligomerization reactions; additionally, modeling of mean double bond equivalents (DBE) for each protonated class suggests increasing carbonyl content for each particular class with increasing oxidation time. The oxidations of B15 and B100 doped samples were compared to that of B0. B15 samples were found to correspond closely to B0 samples, with a similar number of species detected. B100 samples showed a significant increase in number of species generated at 24–72 h relative to B0 and B15; however, a similar number of species were observed at 168 h for all samples, indicating a similar level of base oil oxidation at the final oxidation point. FTICR MS is shown to afford new insights into base oil oxidation as a function of time and biofuel content

    Studies on Dibenzylamines as Inhibitors of Venezuelan Equine Encephalitis Virus

    Get PDF
    Alphaviruses are arthropod-transmitted members of the Togaviridae family that can cause severe disease in humans, including debilitating arthralgia and severe neurological complications. Currently, there are no approved vaccines or antiviral therapies directed against the alphaviruses, and care is limited to treating disease symptoms. A phenotypic cell-based high-throughput screen was performed to identify small molecules that inhibit the replication of Venezuelan Equine Encephalitis Virus (VEEV). The compound, 1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-(3-fluoro-4-methoxybenzyl)ethan-1-amine (1), was identified as a highly active, potent inhibitor of VEEV with an effective concentration for 90% inhibition of virus (EC90) of 0.89 μM and 7.49 log reduction in virus titers at 10 μM concentration. These data suggest that further investigation of compound 1 as an antiviral therapeutic against VEEV, and perhaps other alphaviruses, is warranted. Experiments suggested that the antiviral activity of compound 1 is directed at an early step in the VEEV replication cycle by blocking viral RNA and protein synthesis
    corecore