24 research outputs found

    Greater ectopic fat deposition and liver fibroinflammation, and lower skeletal muscle mass in people with type 2 diabetes

    Get PDF
    ObjectiveType 2 diabetes (T2D) is associated with significant end-organ damage and ectopic fat accumulation. Multiparametric magnetic resonance imaging (MRI) can provide a rapid, noninvasive assessment of multiorgan and body composition. The primary objective of this study was to investigate differences in visceral adiposity, ectopic fat accumulation, body composition, and relevant biomarkers between people with and without T2D.MethodsParticipant demographics, routine biochemistry, and multiparametric MRI scans of the liver, pancreas, visceral and subcutaneous adipose tissue, and skeletal muscle were analyzed from 266 participants (131 with T2D and 135 without T2D) who were matched for age, gender, and BMI. Wilcoxon and χ2 tests were performed to calculate differences between groups.ResultsParticipants with T2D had significantly elevated liver fat (7.4% vs. 5.3%, p = 0.011) and fibroinflammation (as assessed by corrected T1 [cT1]; 730 milliseconds vs. 709 milliseconds, p = 0.019), despite there being no differences in liver biochemistry, serum aspartate aminotransferase (p = 0.35), or alanine transaminase concentration (p = 0.11). Significantly lower measures of skeletal muscle index (45.2 cm2 /m2 vs. 50.6 cm2 /m2 , p = 0.003) and high-density lipoprotein cholesterol (1.1 mmol/L vs. 1.3 mmol/L, p ConclusionsMultiparametric MRI revealed significantly elevated liver fat and fibroinflammation in participants with T2D, despite normal liver biochemistry. This study corroborates findings of significantly lower measures of skeletal muscle and high-density lipoprotein cholesterol in participants with T2D versus those without T2D

    Quantitative imaging reveals steatosis and fibro-inflammation in multiple organs in people with type 2 diabetes: a real-world study.

    Get PDF
    We aimed to determine the extent of multi-organ fat accumulation and fibro-inflammation in individuals living with type 2 diabetes. We deeply phenotyped individuals with type 2 diabetes (134 from secondary care, 69 from primary care) with multi-organ, quantitative multi-parametric MRI and compared with 134 matched controls and 92 normal weight controls. We examined the impact of diabetes duration, obesity status and glycemic control. Ninety-three of the individuals with type 2 diabetes were re-evaluated at 7 months (median). Multi-organ abnormalities were more common in individuals with type 2 diabetes (94%) than in age, BMI-matched healthy or healthy normal weight people. We demonstrated a high burden of combined steatosis and fibro-inflammation, within the liver, pancreas and kidneys (41, 17 and 10%), associated with visceral adiposity (73%) and poor vascular health (82%). Obesity was most closely associated with advanced liver disease, renal and visceral steatosis, and multi-organ abnormalities whilst poor glycaemic control was associated with pancreatic fibro-inflammation. Pharmacological therapies with proven cardiorenal protection improved liver and vascular health unlike conventional glucose-lowering treatments, whilst weight loss or improved glycaemic control reduced multi-organ adiposity (p≤0.01). Quantitative imaging in people with type 2 diabetes highlights widespread organ abnormalities and may provide useful risk and treatment stratification

    Cardiac abnormalities in Long COVID 1-year post-SARS-CoV-2 infection

    Get PDF
    BACKGROUND: Long COVID is associated with multiple symptoms and impairment in multiple organs. Cross-sectional studies have reported cardiac impairment to varying degrees by varying methodologies. Using cardiac MR (CMR), we investigated a 12-month trajectory of abnormalities in Long COVID. OBJECTIVES: To investigate cardiac abnormalities 1-year post-SARS-CoV-2 infection. METHODS: 534 individuals with Long COVID underwent CMR (T1/T2 mapping, cardiac mass, volumes, function and strain) and multiorgan MRI at 6 months (IQR 4.3-7.3) since first post-COVID-19 symptoms. 330 were rescanned at 12.6 (IQR 11.4-14.2) months if abnormal baseline findings were reported. Symptoms, questionnaires and blood samples were collected at both time points. CMR abnormalities were defined as ≥1 of low left or right ventricular ejection fraction (LVEF), high left or right ventricular end diastolic volume, low 3D left ventricular global longitudinal strain (GLS), or elevated native T1 in ≥3 cardiac segments. Significant change over time was reported by comparison with 92 healthy controls. RESULTS: Technical success of multiorgan and CMR assessment in non-acute settings was 99.1% and 99.6% at baseline, and 98.3% and 98.8% at follow-up. Of individuals with Long COVID, 102/534 (19%) had CMR abnormalities at baseline; 71/102 had complete paired data at 12 months. Of those, 58% presented with ongoing CMR abnormalities at 12 months. High sensitivity cardiac troponin I and B-type natriuretic peptide were not predictive of CMR findings, symptoms or clinical outcomes. At baseline, low LVEF was associated with persistent CMR abnormality, abnormal GLS associated with low quality of life and abnormal T1 in at least three segments was associated with better clinical outcomes at 12 months. CONCLUSION: CMR abnormalities (left entricular or right ventricular dysfunction/dilatation and/or abnormal T1mapping), occurred in one in five individuals with Long COVID at 6 months, persisting in over half of those at 12 months. Cardiac-related blood biomarkers could not identify CMR abnormalities in Long COVID. TRIAL REGISTRATION NUMBER: NCT04369807

    Cardiac abnormalities in Long COVID 1-year post-SARS-CoV-2 infection

    Get PDF
    BackgroundLong COVID is associated with multiple symptoms and impairment in multiple organs. Cross-sectional studies have reported cardiac impairment to varying degrees by varying methodologies. Using cardiac MR (CMR), we investigated a 12-month trajectory of abnormalities in Long COVID.ObjectivesTo investigate cardiac abnormalities 1-year post-SARS-CoV-2 infection.Methods534 individuals with Long COVID underwent CMR (T1/T2 mapping, cardiac mass, volumes, function and strain) and multiorgan MRI at 6 months (IQR 4.3-7.3) since first post-COVID-19 symptoms. 330 were rescanned at 12.6 (IQR 11.4-14.2) months if abnormal baseline findings were reported. Symptoms, questionnaires and blood samples were collected at both time points. CMR abnormalities were defined as ≥1 of low left or right ventricular ejection fraction (LVEF), high left or right ventricular end diastolic volume, low 3D left ventricular global longitudinal strain (GLS), or elevated native T1 in ≥3 cardiac segments. Significant change over time was reported by comparison with 92 healthy controls.ResultsTechnical success of multiorgan and CMR assessment in non-acute settings was 99.1% and 99.6% at baseline, and 98.3% and 98.8% at follow-up. Of individuals with Long COVID, 102/534 (19%) had CMR abnormalities at baseline; 71/102 had complete paired data at 12 months. Of those, 58% presented with ongoing CMR abnormalities at 12 months. High sensitivity cardiac troponin I and B-type natriuretic peptide were not predictive of CMR findings, symptoms or clinical outcomes. At baseline, low LVEF was associated with persistent CMR abnormality, abnormal GLS associated with low quality of life and abnormal T1 in at least three segments was associated with better clinical outcomes at 12 months.ConclusionCMR abnormalities (left entricular or right ventricular dysfunction/dilatation and/or abnormal T1mapping), occurred in one in five individuals with Long COVID at 6 months, persisting in over half of those at 12 months. Cardiac-related blood biomarkers could not identify CMR abnormalities in Long COVID.Trial registration numberNCT04369807

    Multi-organ impairment and long COVID: a 1-year prospective, longitudinal cohort study.

    Get PDF
    ObjectivesTo determine the prevalence of organ impairment in long COVID patients at 6 and 12 months after initial symptoms and to explore links to clinical presentation.DesignProspective cohort study.ParticipantsIndividuals.MethodsIn individuals recovered from acute COVID-19, we assessed symptoms, health status, and multi-organ tissue characterisation and function.SettingTwo non-acute healthcare settings (Oxford and London). Physiological and biochemical investigations were performed at baseline on all individuals, and those with organ impairment were reassessed.Main outcome measuresPrimary outcome was prevalence of single- and multi-organ impairment at 6 and 12 months post COVID-19.ResultsA total of 536 individuals (mean age 45 years, 73% female, 89% white, 32% healthcare workers, 13% acute COVID-19 hospitalisation) completed baseline assessment (median: 6 months post COVID-19); 331 (62%) with organ impairment or incidental findings had follow-up, with reduced symptom burden from baseline (median number of symptoms 10 and 3, at 6 and 12 months, respectively). Extreme breathlessness (38% and 30%), cognitive dysfunction (48% and 38%) and poor health-related quality of life (EQ-5D-5L ConclusionsOrgan impairment persisted in 59% of 331 individuals followed up at 1 year post COVID-19, with implications for symptoms, quality of life and longer-term health, signalling the need for prevention and integrated care of long COVID.Trial Registration: ClinicalTrials.gov Identifier: NCT04369807

    Evaluation of the Clinical and Microbiological Response to Salmonella Paratyphi A Infection in the First Paratyphoid Human Challenge Model.

    Get PDF
    BACKGROUND: To expedite the evaluation of vaccines against paratyphoid fever, we aimed to develop the first human challenge model of Salmonella enterica serovar Paratyphi A infection. METHODS: Two groups of 20 participants underwent oral challenge with S. Paratyphi A following sodium bicarbonate pretreatment at 1 of 2 dose levels (group 1: 1-5 × 103 colony-forming units [CFU] and group 2: 0.5-1 × 103 CFU). Participants were monitored in an outpatient setting with daily clinical review and collection of blood and stool cultures. Antibiotic treatment was started when prespecified diagnostic criteria were met (temperature ≥38°C for ≥12 hours and/or bacteremia) or at day 14 postchallenge. RESULTS: The primary study objective was achieved following challenge with 1-5 × 103 CFU (group 1), which resulted in an attack rate of 12 of 20 (60%). Compared with typhoid challenge, paratyphoid was notable for high rates of subclinical bacteremia (at this dose, 11/20 [55%]). Despite limited symptoms, bacteremia persisted for up to 96 hours after antibiotic treatment (median duration of bacteremia, 53 hours [interquartile range, 24-85 hours]). Shedding of S. Paratyphi A in stool typically preceded onset of bacteremia. CONCLUSIONS: Challenge with S. Paratyphi A at a dose of 1-5 × 103 CFU was well tolerated and associated with an acceptable safety profile. The frequency and persistence of bacteremia in the absence of clinical symptoms was notable, and markedly different from that seen in previous typhoid challenge studies. We conclude that the paratyphoid challenge model is suitable for the assessment of vaccine efficacy using endpoints that include bacteremia and/or symptomatology. CLINICAL TRIALS REGISTRATION: NCT02100397

    The Impact of Vaccination and Prior Exposure on Stool Shedding of Salmonella Typhi and Salmonella Paratyphi in 6 Controlled Human Infection Studies

    Get PDF
    Background: Shedding of Salmonella Typhi or Paratyphi in the stool or urine leads to contamination of food or water, which is a prerequisite for transmission of enteric fever. Currently, there are limited data on the effect of vaccination or prior exposure on stool shedding. Methods: Six Salmonella Typhi or Paratyphi human challenge studies were conducted between 2011 and 2017. Participants were either unvaccinated or vaccinated with 1 of 4 vaccines: Vi-polysaccharide (Vi-PS), Vi-tetanus-toxoid conjugate vaccine (Vi-TT), live oral Ty21a vaccine, or an experimental vaccine (M01ZH09). Daily stool cultures were collected for 14 days after challenge. Results: There were 4934 stool samples collected from 430 volunteers. Participants who received Vi-PS or Vi-TT shed less than unvaccinated participants (odds ratio [OR], 0.34; 95% confidence interval [CI], 0.15-0.77; P = .010 and OR, 0.41; 95% CI, 0.19-0.91, P = .029 for Vi-PS and Vi-TT, respectively). Higher anti-Vi immunoglobulin G titers were associated with less shedding of S. Typhi (P < .0001). A nonsignificant reduction in shedding was associated with Ty21a vaccine (OR, 0.57; 95% CI, 0.27-1.20; P = .140). Individuals previously exposed to S. Typhi shed less than previously unexposed individuals (OR, 0.30; 95% CI, 0.1-0.8; P = .016). Shedding of S. Typhi was more common than S. Paratyphi. Conclusions: Prior vaccination with Vi vaccines, or natural infection, reduces onward transmission of S. Typhi. Field trials of Vi-TT should be designed to detect indirect protection, reflecting the consequence of reduced stool shedding observed in the human challenge model

    Development and Evaluation of a Blood Culture PCR Assay for Rapid Detection of Salmonella Paratyphi A in Clinical Samples.

    Get PDF
    BACKGROUND: Enteric fever remains an important cause of morbidity in many low-income countries and Salmonella Paratyphi A has emerged as the aetiological agent in an increasing proportion of cases. Lack of adequate diagnostics hinders early diagnosis and prompt treatment of both typhoid and paratyphoid but development of assays to identify paratyphoid has been particularly neglected. Here we describe the development of a rapid and sensitive blood culture PCR method for detection of Salmonella Paratyphi A from blood, potentially allowing for appropriate diagnosis and antimicrobial treatment to be initiated on the same day. METHODS: Venous blood samples from volunteers experimentally challenged orally with Salmonella Paratyphi A, who subsequently developed paratyphoid, were taken on the day of diagnosis; 10 ml for quantitative blood culture and automated blood culture, and 5 ml for blood culture PCR. In the latter assay, bacteria were grown in tryptone soy broth containing 2.4% ox bile and micrococcal nuclease for 5 hours (37°C) before bacterial DNA was isolated for PCR detection targeting the fliC-a gene of Salmonella Paratyphi A. RESULTS: An optimized broth containing 2.4% ox bile and micrococcal nuclease, as well as a PCR test was developed for a blood culture PCR assay of Salmonella Paratyphi A. The volunteers diagnosed with paratyphoid had a median bacterial burden of 1 (range 0.1-6.9) CFU/ml blood. All the blood culture PCR positive cases where a positive bacterial growth was shown by quantitative blood culture had a bacterial burden of ≥ 0.3 CFU/ ml blood. The blood culture PCR assay identified an equal number of positive cases as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood), but utilized only half the volume of specimens. CONCLUSIONS: The blood culture PCR method for detection of Salmonella Paratyphi A can be completed within 9 hours and offers the potential for same-day diagnosis of enteric fever. Using 5 ml blood, it exhibited a lower limit of detection equal to 0.3 CFU/ml blood, and it performed at least as well as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood) of clinical specimens despite using half the volume of blood. The findings warrant its further study in endemic populations with a potential use as a novel diagnostic which fills the present gap of paratyphoid diagnostics

    The Additive Value of Cardiovascular Magnetic Resonance in Convalescent COVID-19 Patients

    No full text
    In COVID-19 the development of severe viral pneumonia that is coupled with systemic inflammatory response triggers multi-organ failure and is of major concern. Cardiac involvement occurs in nearly 60% of patients with pre-existing cardiovascular conditions and heralds worse clinical outcome. Diagnoses carried out in the acute phase of COVID-19 rely upon increased levels of circulating cardiac injury biomarkers and transthoracic echocardiography. These diagnostics, however, were unable to pinpoint the mechanisms of cardiac injury in COVID-19 patients. Identifying the main features of cardiac injury remains an urgent yet unmet need in cardiology, given the potential clinical consequences. Cardiovascular magnetic resonance (CMR) provides an unparalleled opportunity to gain a deeper insight into myocardial injury given its unique ability to interrogate the properties of myocardial tissue. This endeavor is particularly important in convalescent COVID-19 patients as many continue to experience chest pain, palpitations, dyspnea and exertional fatigue, six or more months after the acute illness. This review will provide a critical appraisal of research on cardiovascular damage in convalescent adult COVID-19 patients with an emphasis on the use of CMR and its value to our understanding of organ damage
    corecore