1,475 research outputs found

    Arctic paleoceanography - Quo Vadis?

    Get PDF
    Introduction: The new Arctic Challenge Not counting the geographic exploration of the Arctic coast lines by fishermen, commercial traders and a few explorers it is only little more than 100 years ago that systematic investigations of the natural properties of the Arctic Ocean began. It was the German Carl Koldewey who sailed to Fram Strait in 1868 to study the nature of the ice margin, and he was followed by the famous Norwegian Fridtjof Nansen who drifted 1893-1 895 (Nansen, 1904) along with the central eastern Arctic Transpolar Drift - on his newly built polar research vessel FRAM - in his attempt to reach the North Pole (Fig. 1). Both men and their Crews were driven by the desire to understand the special oceanographic properties of the Arctic Oceans as well as the climatic variability and significance of the Arctic sea ice and its distribution. The motive of modern Arctic research is much the Same as more than 100 years ago, but Part of our tools and approaches have been improved over the past 100 years in such a way that we stand a much greater chance to succeed than these scientific pioneers. (...

    150 Jahre deutsche Polarforschung und die Erschließung Grönlands – eine dänisch-deutsche Chronik Plan für eine internationale Ausstellung

    Get PDF
    Die deutsche Polarforschung, die sich über Dekaden in Kooperation mit dänischen Partnern entwickelt hat, kann 2018 ihr 150-jähriges Jubiläum feiern. Eine großzügige und international sichtbare deutsch-dänische historische Ausstellung zur Grönlandforschung sollte ausgerichtet werden, die geeignet sein wird, in Deutschland und Dänemark eine breite Öffentlichkeit anzusprechen. Der Focus läge auf der geowissenschaftlichen Erfassung Grönlands und der Grönlandsee, aber auch kultur- und sozialwissenschaftliche Aspekte sollten gebührend berücksichtigt werden. Die enge Kooperation deutscher Wissenschaftler mit grönländischen und dänischen Partnern bei der Bearbeitung der grönländischen Natur- und Besiedelungsgeschichte zwischen dem 19. und 21. Jahrhundert gilt als ein Juwel internationaler Synergien im Rahmen der Polarforschung. Beachtlich ist auch: Bereits ab 1732 siedelten deutsche Missionare in zunehmender Zahl an Grönlands Westküste und trugen bis zum Jahre 1900 erheblich zum Verständnis und zur Verbreitung der Kenntnis über ihre Wahlheimat bei. Die den Europäern weitgehend unbekannte grönländische Ostküste zu explorieren war ein wichtiges Motiv deutscher Polarforschung 1868. Später wurde Alfred Wegener (1880-1930) mit seiner Teilnahme an zwei dänischen Expeditionen ein wichtiger Protagonist der deutsch-dänischen wissenschaftlichen Beziehungen. Mit eigenen Untersuchungen hat er die besondere geowissenschaftliche Bedeutung des grönländischen Inlandeises herausgestellt, die auch in jüngster Zeit bei deutsch-dänischen Kooperationen insbesondere bei den Kernbohrungen auf dem Inlandeis ihren Niederschlag fand

    Dr. Ilse Seibold, née Usbeck, 1925–2021: Considered by many as a consecutive memory of major geoscientists

    Get PDF
    Summary of Ilse Seibold's vita Ilse Seibold, née Usbeck, was born May 8, 1925 in Breslau, Silesia, and went to school in Halle/Saale during WW2. She started her studies of geology and paleontology at the University of Halle and at the Humboldt University in Berlin, and later at the University of Tübingen, where she received her doctorate as micropaleontologist in 1951 with Otto Schindewolf as her supervisor. She remained active as productive scientist over many decades. In 1952, she married Dr. Eugen Seibold, who in 1958 became professor at Kiel University, founded one of Europe's most important institutes for marine geology, and later became president of the German Science Foundation (DFG), and subsequently of the European Science Foundation (ESF). Being a scientist herself Ilse Seibold soon evolved to a deeply reflective insider of geological sciences. She followed her husband during his scientific career from his appointments in Tübingen, Bonn, Karlsruhe, Kiel, to Bonn and Strasbourg/Freiburg i.Br. She accompanied Eugen on his sabbatical leave at Scripps Institution of Oceanography in La Jolla, CA. She participated in countless international scientific meetings. Together with Eugen she published many papers that document her independence and autonomy as scientist. She gained deep insights into the origins of the geosciences and their historical evolution, up to the ideas of fine arts. We are happy that she documented in her publications a broad range of her scientific and distinguished-humane impressions

    Sedimentary facies of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka

    Get PDF
    Sediment fluxes were highest in the Norwegian Sea during late glacial/early deglacial periods, i.e., at oxygen isotope transition 43, below transition 65, at various levels within stage 6, and below stage 9. Dark diamictons deposited at these times reflect intense iceberg rafting in surface waters fed by surges along the front of the marine-based parts of the continental ice sheets in the southeastern sector of the Norwegian Sea. The high organic carbon content (0.5–1.3%) in these layers reflects input from erosion of terrigenious matter-rich sediments outcropping on the shelves. Partial oxidation of organic matter and decreased deep-water renewal may explain the strong carbonate dissolution observed during these periods. Interglacial environments were strongly variable throughout the last 350 ka. Circulation patterns of stage 5e best resemble modern conditions, while stage 7 and 9 sediments record a much weaker Norwegian Current

    The imprint of anthropogenic CO2 in the Arctic Ocean: evidence from planktic δ13C data from watercolumn and sediment surfaces

    Get PDF
    δ13C values of N. pachyderma (sin.) from the water column and from core top sediments are compared in order to determine the 13C decrease caused by the addition of anthropogenic CO2 to the atmosphere. This effect, which is referred to as the surface ocean Suess effect, is estimated to be about −0.9‰(±0.2‰) within the Arctic Ocean halocline waters and to about −0.6‰(±0.1‰) in the Atlantic-derived waters of the southern Nansen Basin. This means that the area where the Arctic Ocean halocline waters are formed, the Arctic shelf regions, are relatively well ventilated with respect to CO2. Nevertheless, δ13C of dissolved inorganic carbon (δ13CDIC) in the Arctic Ocean halocline waters is far from isotopic equilibrium. Absolute values of δ13C of N. pachyderma (sin.) covary with the surface ocean Suess effect, and we interprete changes in both parameters as a reflection of the degree of ventilation of the waters on the shelf sea. Measurements of δ13C of N. pachyderma (sin.) in the Arctic Ocean from plankton tows reveal a “vital effect” of about −2‰, significantly different from other published values. A first-order estimate of the total anthropogenic carbon inventory shows, that despite of its permanent sea-ice cover, the Arctic Ocean, with 2% of the global ocean area, is responsible for about 4–6% of the global ocean's CO2 uptake
    corecore