38 research outputs found
Ferromagnetic Quantum Criticality in the Quasi-One-Dimensional Heavy Fermion Metal YbNi4P2
We present a new Kondo-lattice system, YbNi4P2, which is a clean
heavy-fermion metal with a severely reduced ferromagnetic ordering temperature
at T_C=0.17K, evidenced by distinct anomalies in susceptibility, specific-heat,
and resistivity measurements. The ferromagnetic nature of the transition, with
only a small ordered moment of ~0.05mu_B, is established by a diverging
susceptibility at T_C with huge absolute values in the ferromagnetically
ordered state, severely reduced by small magnetic fields. Furthermore, YbNi4P2
is a stoichiometric system with a quasi-one-dimensional crystal and electronic
structure and strong correlation effects which dominate the low temperature
properties. This is reflected by a stronger-than-logarithmically diverging
Sommerfeld coefficient and a linear-in-T resistivity above T_C which cannot be
explained by any current theoretical predictions. These exciting
characteristics are unique among all correlated electron systems and make this
an interesting material for further in-depth investigations.Comment: 14 pages, 6 figure
Magnetic and structural properties of the iron silicide superconductor LaFeSiH
The magnetic and structural properties of the recently discovered
pnictogen/chalcogen-free superconductor LaFeSiH (~K) have been
investigated by Fe synchrotron M{\"o}ssbauer source (SMS) spectroscopy,
x-ray and neutron powder diffraction and Si nuclear magnetic resonance
spectroscopy (NMR). No sign of long range magnetic order or local moments has
been detected in any of the measurements and LaFeSiH remains tetragonal down to
2 K. The activated temperature dependence of both the NMR Knight shift and the
relaxation rate is analogous to that observed in strongly overdoped
Fe-based superconductors. These results, together with the
temperature-independent NMR linewidth, show that LaFeSiH is an homogeneous
metal, far from any magnetic or nematic instability, and with similar Fermi
surface properties as strongly overdoped iron pnictides. This raises the
prospect of enhancing the of LaFeSiH by reducing its carrier
concentration through appropriate chemical substitutions. Additional SMS
spectroscopy measurements under hydrostatic pressure up to 18.8~GPa found no
measurable hyperfine field
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Nonlocal Kondo coupling and selective doping from cerium <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> electrons in iron-based superconductors
In this paper, we consider an unconventional doping effect of strongly correlated cerium 4 f electrons in layered intermetallic systems. The conduction electron part of the model is taken to reproduce the hole and electron pockets of iron-based superconductors (FeSCs), and the cerium contribution is studied through an effective tight-binding Hamiltonian arising from the slave-boson mean-field theory of the periodic Anderson model. We show how the consideration of the nonlocal Kondo coupling naturally present in real materials can lead to a pocket-selective doping effect from cerium f electrons. The model is designed for paramagnetic materials of the ZrCuSiAs-type structure such as CeFeSiH, CeFePO, or the high-pressure phase of CeFeAsO. In certain conditions, the model shows a Lifshitz transition which can be induced by either doping or change in the hybridization strength between iron and cerium orbitals. We present some signatures of both pocket-selective doping and Lifshitz transition by means of the density of states at the Fermi level, the static spin susceptibility, the optical conductivity, and Raman spectroscopy
Strain-induced crystallization in sustainably crosslinked epoxidized natural rubber
International audienc
Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes.
During neuropathological states associated with inflammation, the levels of cytokines such as interleukin-1beta (IL-1beta) are increased. Several studies have suggested that the neuronal damage observed in pathogenesis implicating IL-1beta are caused by an alteration in the neurochemical interactions between neurons and astrocytes. We report here that treating striatal astrocytes in primary culture with IL-1beta for 22-24 hr enhances the ATP-evoked release of arachidonic acid (AA) with no effect on the ATP-induced accumulation of inositol phosphates. The molecular mechanism responsible for this effect involves the expression of P2Y2 receptors (a subtype of purinoceptor activated by ATP) and cytosolic phospholipase A2 (cPLA2, an enzyme that mediates AA release). Indeed, P2Y2 antisense oligonucleotides reduce the ATP-evoked release of AA only from IL-1beta-treated astrocytes. Further, both the amount of cPLA2 (as assessed by Western blotting) and the release of AA resulting from direct activation of cPLA2 increased fourfold in cells treated with IL-1beta. We also report evidence indicating that the coupling of newly expressed P2Y2 receptors to cPLA2 is dependent on PKC activity. These results suggest that during inflammatory conditions, IL-1beta reveals a functional P2Y2 signaling pathway in astrocytes that results in a dramatic increase in the levels of free AA. This pathway may thus contribute to the neuronal loss associated with cerebral ischemia or traumatic brain injury
Recommended from our members
Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes.
During neuropathological states associated with inflammation, the levels of cytokines such as interleukin-1beta (IL-1beta) are increased. Several studies have suggested that the neuronal damage observed in pathogenesis implicating IL-1beta are caused by an alteration in the neurochemical interactions between neurons and astrocytes. We report here that treating striatal astrocytes in primary culture with IL-1beta for 22-24 hr enhances the ATP-evoked release of arachidonic acid (AA) with no effect on the ATP-induced accumulation of inositol phosphates. The molecular mechanism responsible for this effect involves the expression of P2Y2 receptors (a subtype of purinoceptor activated by ATP) and cytosolic phospholipase A2 (cPLA2, an enzyme that mediates AA release). Indeed, P2Y2 antisense oligonucleotides reduce the ATP-evoked release of AA only from IL-1beta-treated astrocytes. Further, both the amount of cPLA2 (as assessed by Western blotting) and the release of AA resulting from direct activation of cPLA2 increased fourfold in cells treated with IL-1beta. We also report evidence indicating that the coupling of newly expressed P2Y2 receptors to cPLA2 is dependent on PKC activity. These results suggest that during inflammatory conditions, IL-1beta reveals a functional P2Y2 signaling pathway in astrocytes that results in a dramatic increase in the levels of free AA. This pathway may thus contribute to the neuronal loss associated with cerebral ischemia or traumatic brain injury