32 research outputs found

    Cross-Clade Recognition of HIV-1 CAp24 by CD4+ T Cells in HIV-1-Infected Individuals in Burkina Faso and Germany

    Get PDF
    The presence of antigen-specific cellular immune responses may be an indicator of long-term asymptomatic HIV-1-disease. The detection of cellular immune responses to infection with different subtypes of HIV-1 may be hampered by genetic differences of immunodominant antigens such as the capsid protein CAp24. In Nouna, Burkina Faso, HIV-1 circulating recombinant forms CRF02_AG and CRF06_cpx are the 2 major strains detectable in HIV-1-infected individuals, while subtype B strains prevail in Europe and North America. Amino acid sequences of CAp24 were assessed in blood samples from 10 HIV-1-infected patients in Nouna, Burkina Faso. Production of interferon-gamma (IFN-γ) in peripheral blood CD4+ lymphocytes in response to recombinant HIV-1 proteins derived from clade B (including CAp24NL4-3) was measured using a modified flow-cytometry-based whole blood short term activation assay (FASTimmune, BDBiosciences). IFN-γ production following stimulation with a whole length CAp24 protein derived from clade B (CAp24NL4-3) was additionally quantified in comparison to a CAp24 protein derived from CRF02_AG (CAp24BD6-15) in 16 HIV-1-infected patients in Heidelberg, Germany. Amino acid sequence identity of CAp24 obtained from patients in Nouna ranged between 86 and 89% when compared to the clade B CAp24NL4-3 consensus sequence, between 90 and 95% when compared to the circulating recombinant form CRF06_CPX consensus sequence, and between 92 and 96% when compared to the CAp24BD6-15 consensus sequence. Significant numbers of HIV-1-specific CD4+ lymphocytes producing IFN-γ were detected in 4 of 10 HIV-1-infected patients. In 7 of 16 patients in Heidelberg, recombinant CAp24BD6-15 stimulated IFN-γ-production in CD4+ lymphocytes to a similar extent as the clade B-derived CAp24NL4-3. Thus, antigen-specific CD4+ lymphocytes from both West African and European patients infected with different strains of HIV-1 show relevant cross-clade recognition of HIV-1 CAp24 in a flow-cytometry-based whole blood short term activation assay

    The Origin and Evolutionary History of HIV-1 Subtype C in Senegal

    Get PDF
    Background: The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings: We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance: Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses

    Variable Fitness Impact of HIV-1 Escape Mutations to Cytotoxic T Lymphocyte (CTL) Response

    Get PDF
    Human lymphocyte antigen (HLA)-restricted CD8+ cytotoxic T lymphocytes (CTL) target and kill HIV-infected cells expressing cognate viral epitopes. This response selects for escape mutations within CTL epitopes that can diminish viral replication fitness. Here, we assess the fitness impact of escape mutations emerging in seven CTL epitopes in the gp120 Env and p24 Gag coding regions of an individual followed longitudinally from the time of acute HIV-1 infection, as well as some of these same epitopes recognized in other HIV-1-infected individuals. Nine dominant mutations appeared in five gp120 epitopes within the first year of infection, whereas all four mutations found in two p24 epitopes emerged after nearly two years of infection. These mutations were introduced individually into the autologous gene found in acute infection and then placed into a full-length, infectious viral genome. When competed against virus expressing the parental protein, fitness loss was observed with only one of the nine gp120 mutations, whereas four had no effect and three conferred a slight increase in fitness. In contrast, mutations conferring CTL escape in the p24 epitopes significantly decreased viral fitness. One particular escape mutation within a p24 epitope was associated with reduced peptide recognition and high viral fitness costs but was replaced by a fitness-neutral mutation. This mutation appeared to alter epitope processing concomitant with a reduced CTL response. In conclusion, CTL escape mutations in HIV-1 Gag p24 were associated with significant fitness costs, whereas most escape mutations in the Env gene were fitness neutral, suggesting a balance between immunologic escape and replicative fitness costs

    High level of HIV-1 drug resistance mutations in patients with unsuppressed viral loads in rural northern South Africa

    No full text
    Abstract Background Combination antiretroviral therapy (cART) has significantly reduced HIV morbidity and mortality in both developed and developing countries. However, the sustainability of cART may be compromised by the emergence of viral drug resistance mutations (DRM) and the cellular persistence of proviruses carrying these DRM. This is potentially a more serious problem in resource limited settings. Methods DRM were evaluated in individuals with unsuppressed viral loads after first or multiple lines of cART at two sites in rural Limpopo, South Africa. Seventy-two patients with viral loads of >1000 copies/ml were recruited between March 2014 and December 2015. Complete protease (PR) and partial Reverse Transcriptase (RT) sequences were amplified from both plasma RNA and paired proviral DNA from 35 of these subjects. Amplicons were directly sequenced to determine subtype and DRM using the Stanford HIV Drug Resistance Interpretation algorithm. Results Among the 72 samples, 69 could be PCR amplified from RNA and 35 from both RNA and DNA. Sixty-five (94.2%) viruses were subtype C, while one was subtype B (1.4%), one recombinant K/C, one recombinant C/B and one unclassified. Fifty-eight (84%) sequences carried at least one DRM, while 11 (15.9%) displayed no DRM. DRM prevalence according to drug class was: NRTI 60.8% NNRTI 65.2%, and PI 5.8%. The most common DRMs were; M184V (51.7%), K103N (50%), V106M (20.6%), D67N (13.3%), K65R (12%). The frequency of the DRM tracked well with the frequency of use of medications to which the mutations were predicted to confer resistance. Interestingly, a significant number of subjects showed predicted resistance to the newer NNRTIs, etravirine (33%) and rilpivirine (42%), both of which are not yet available in this setting. The proportion of DRM in RNA and DNA were mostly similar with the exception of the thymidine analogue mutations (TAMs) D67N, K70R, K219QE; and K103N which were slightly more prevalent in DNA than RNA. Subjects who had received cART for at least 5 years were more likely to harbour >2 DRM (p < 0.05) compared to those treated for a shorter period. DRM were more prevalent in this rural setting compared to a neighbouring urban setting. Conclusion We found a very high prevalence of NRTI and NNRTI DRM in patients from rural Limpopo settings with different durations of treatment. The prevalence was significantly higher than those reported in urban settings in South Africa. The dominance of NNRTI based mutations late in treatment supports the use of PI based regimens for second line treatment in this setting. The slight dominance of TAMs in DNA from infected PBMCs compared to plasma virus requires further studies that should include cART subjects with suppressed virus. Such studies will improve our understanding of the pattern of drug resistance and dynamics of viral persistence in these rural settings

    Similar replicative fitness is shared by the subtype B and unique BF recombinant HIV-1 isolates that dominate the epidemic in Argentina.

    Get PDF
    The HIV-1 epidemic in South America is dominated by pure subtypes (mostly B and C) and more than 7 BF and BC recombinant forms. In Argentina, circulating recombinant forms (CRFs) comprised of subtypes B and F make up more than 50% of HIV infections. For this study, 28 HIV-1 primary isolates were obtained from patients in Buenos Aires, Argentina and initially classified into subtype B (n = 9, 32.1%), C (n = 1, 3.6%), and CRFs (n = 18, 64.3%) using partial pol and vpu-env sequences, which proved to be inconsistent and inaccurate for these phylogenetic analyses. Near full length genome sequences of these primary HIV-1 isolates revealed that nearly all intersubtype BF recombination sites were unique and countered previous "CRF" B/F classifications. The majority of these Argentinean HIV-1 isolates were CCR5-using but 4 had a dual/mixed tropism as predicted by both phenotypic and genotypic assays. Comparison of the replicative fitness of these BF primary HIV-1 isolates to circulating B, F, and C HIV-1 using pairwise competitions in peripheral blood mononuclear cells (PBMCs) indicated a similarity in fitness of these BF recombinants to subtypes B and F HIV-1 (of the same co-receptor usage) whereas subtype C HIV-1 was significantly less fit than all as previously reported. These results suggest that the multitude of BF HIV-1 strains present within the Argentinean population do not appear to have gained replicative fitness following recent B and F recombination events

    Characterization of APOBEC3 variation in a population of HIV-1 infected individuals in northern South Africa

    No full text
    Abstract Background The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) genes A3D, A3F, A3G and A3H have all been implicated in the restriction of human immunodeficiency virus type 1 (HIV-1) replication. Polymorphisms in these genes are likely to impact viral replication and fitness, contributing to viral diversity. Currently, only a few studies indicate that polymorphisms in the A3 genes may be correlated with infection risk and disease progression. Methods To characterize polymorphisms in the coding regions of these APOBEC3 genes in an HIV-1 infected population from the Limpopo Province of South Africa, APOBEC3 gene fragments were amplified from genomic DNA of 192 HIV-1 infected subjects and sequenced on an Illumina MiSeq platform. SNPs were confirmed and compared to SNPs in other populations reported in the 1000 Genome Phase III and HapMap databases, as well as in the ExAC exome database. Hardy-Weinberg Equilibrium was calculated and haplotypes were inferred using the LDlink 3.0 web tool. Linkage Disequilibrium (LD) for these SNPS were calculated in the total 1000 genome and AFR populations using the same tool. Results Known variants compared to the GRCh37 consensus genome sequence were detected at relatively high frequencies (> 5%) in all of the APOBEC3 genes. A3H showed the most variation, with several of the variants present in both alleles in almost all of the patients. Several minor allele variants (< 5%) were also detected in A3D, A3F and A3G. In addition, novel R6K, L221R and T238I variants in A3D and I117I in A3F were observed. Four, five, four, and three haplotypes were identified for A3D, A3F, A3G, and A3H respectively. Conclusions The study showed significant polymorphisms in the APOBEC3D, 3F, 3G and 3H genes in our South African HIV1-infected cohort. In the case of all of these genes, the polymorphisms were generally present at higher frequencies than reported in other 1000 genome populations and in the ExAC exome consortium database

    Divergent Evolution in Reverse Transcriptase (RT) of HIV-1 Group O and M Lineages: Impact on Structure, Fitness, and Sensitivity to Nonnucleoside RT Inhibitors▿

    No full text
    Natural evolution in primate lentiviral reverse transcriptase (RT) appears to have been constrained by the necessity to maintain function within an asymmetric protein composed of two identical primary amino acid sequences (66 kDa), of which one is cleaved (51 kDa). In this study, a detailed phylogenetic analysis now segregates groups O and M into clusters based on a cysteine or tyrosine residue located at position 181 of RT and linked to other signature residues. Divergent evolution of two group O (C181 or Y181) and the main (Y181 only) HIV-1 lineages did not appreciably impact RT activity or function. Group O RT structural models, based on group M subtype B RT crystal structures, revealed that most evolutionarily linked amino acids appear on a surface-exposed region of one subunit while in a noncatalytic RT pocket of the other subunit. This pocket binds nonnucleoside RT inhibitors (NNRTI); therefore, NNRTI sensitivity was used to probe enzyme differences in these group O and M lineages. In contrast to observations showing acquired drug resistance associated with fitness loss, the C181Y mutation in the C181 group O lineage resulted in a loss of intrinsic NNRTI resistance and was accompanied by fitness loss. Other mutations linked to the NNRTI-resistant C181 lineage also resulted in altered NNRTI sensitivity and a net fitness cost. Based on RT asymmetry and conservation of the intricate reverse transcription process, millions of years of divergent primate lentivirus evolution may be constrained to discrete mutations that appear primarily in the nonfunctional, solvent-accessible NNRTI binding pocket

    HIV-1 Group O Genotypes and Phenotypes: Relationship to Fitness and Susceptibility to Antiretroviral Drugs

    No full text
    Despite only 30,000 group O HIV-1 infections, a similar genetic diversity is observed among the O subgroups H (head) and T (tail) (previously described as subtypes A, B) as in the 9 group M subtypes (A–K). Group O isolates bearing a cysteine at reverse transcriptase (RT) position 181, predominantly the H strains are intrinsically resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, their susceptibility to newer antiretroviral drugs such as etravirine, maraviroc, raltegravir (RAL), and elvitegravir (EVG) remains relatively unknown. We tested a large collection of HIV-1 group O strains for their susceptibility to four classes of antiretroviral drugs namely nucleoside RT, non-nucleoside RT, integrase, and entry inhibitors knowing in advance the intrinsic resistance to NNRTIs. Drug target regions were sequenced to determine various polymorphisms and were phylogenetically analyzed. Replication kinetics and fitness assays were performed in U87-CD4(+)CCR5 and CXCR4 cells and peripheral blood mononuclear cells. With all antiretroviral drugs, group O HIV-1 showed higher variability in IC(50) values than group M HIV-1. The mean IC(50) values for entry and nucleoside reverse transcriptase inhibitor (NRTI) were similar for group O and M HIV-1 isolates. Despite similar susceptibility to maraviroc, the various phenotypic algorithms failed to predict CXCR4 usage based on the V3 Env sequences of group O HIV-1 isolates. Decreased sensitivity of group O HIV-1 to integrase or NNRTIs had no relation to replicative fitness. Group O HIV-1 isolates were 10-fold less sensitive to EVG inhibition than group M HIV-1. These findings suggest that in regions where HIV-1 group O is endemic, first line treatment regimens combining two NRTIs with RAL may provide more sustained virologic responses than the standard regimens involving an NNRTI or protease inhibitors

    Evolution of Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitopes: Fitness-Balanced Escape▿

    No full text
    CD8+ cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection
    corecore