226 research outputs found
Recommended from our members
20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS
Abstract Background: Reciprocal genomic disorders (RGDs) represent a unique class of recurrent genomic variation that offer insight into highly dosage sensitive regions of the morbid human genome. However, the genomic architecture mediating RGDs, namely non-allelic homologous recombination (NAHR) of flanking segmental duplications, has rendered these genomic segments recalcitrant to conventional model studies. We recently developed a novel CRISPR method that leverages the homology of segmental duplications and efficiently generates large microdeletions and microduplications that mimic NAHR in humans, including ablation or duplication of one copy equivalent of the segmental duplications. Here, we explore the functional consequences of 16p11.2 RGD in iPS derived neuronal models and across mouse tissues. Methods: We generated CRISPR-engineered 16p11.2 RGD models against an isogenic iPSC background and performed transcriptome profiling in iPSC-derived neural stem cells (NSCs) and induced neurons (iN) (n = 10 isogenic deletions, 10 duplications, 6 controls). We then integrated these data with RNAseq from 306 libraries from multiple tissues in 70 mouse models of reciprocal deletion and duplication of the syntenic 7qf3 region (cortex, striatum, cerebellum, liver, white fat, brown fat in 16 mice; and replication from cortex, striatum, cerebellum in 54 mice). Results: In ongoing analyses, weighted-gene correlation network analysis (WGCNA) identified co-expression modules that were significantly enriched for 16p11.2 genes, evolutionarily constrained genes, genes robustly associated with autism spectrum disorder (ASD; TADA q < 0.1) and developmental disorders (DDD). Pathway analyses within modules discovered enrichment of genes critical to synaptic formation and neural connectivity as well as the protocadherin gene family. Network analyses specific to brain tissues within modules further identified a convergence on highly connected, or ‘hub’ genes, on Wnt signaling, including Ctnnb1 and Ctnnd1. The module was also again enriched for ASD loci (TADA, FDR < 0.1), constrained genes (ExAC, pLI ≥ 0.9) and brain specific genes from the Human Protein Atlas. Discussion These studies suggest the functional consequences of 16p11.2 RGD across models converge on transcriptional signatures associated with critical neurodevelopmental pathways and individual genes implicated in a spectrum of developmental and neuropsychiatric disorders
The dopaminergic network and genetic susceptibility to schizophrenia
Background: Schizophrenia is a disabling illness with unknown pathogenesis. Estimates of heritability suggest a substantial genetic contribution; however genetic studies to date have been equivocal. Uncovering liability loci may therefore require analyses of functionally related genes. Rooted in this assumption, this dissertation describes a series of studies investigating a genetic epidemiological foundation for the commonly cited hypothesis suggesting dopaminergic dysfunction in schizophrenia pathogenesis, i.e. the 'dopamine hypothesis'. Studies: The initial study investigated DRD3 and identified novel associations across the gene. The second study considered a larger network of dopaminergic genes in two independent Caucasian samples, detecting replicated associations and epistatic interactions. This study proposed a risk model for schizophrenia centered on the dopamine transporter. Study #3 investigated a dopamine precursor, phenylalanine hydroxylase, in four independent samples, identifying a single SNP (rs1522305) that was significantly replicated in two samples. Study #4 was motivated by the hypothesis of a shared genetic etiology for schizophrenia and bipolar disorder. This study comprehensively evaluated the dopaminergic network, selecting 431 'tag' SNPs from 40 genes among large schizophrenia and bipolar cohorts contrasted with adult controls. Across all genes 60% of nominally significant schizophrenia risk factors were also associated with bipolar disorder. The results supported DRD3 variations as risk factors for both disorders, confirmed several previously reported associations, and proposed new targets for future research. Conclusion: These results suggest dopaminergic gene variations could play an etiological role in the pathogenesis of schizophrenia and possibly bipolar 1 disorder. Additional replicate studies are warranted. Public Health Significance: Schizophrenia (SZ) is devastating. When the Global Burden of Disease study calculated disability adjusted life years, weighted for the severity of disability, they determined active psychosis seen in schizophrenia produces disability equal to quadriplegia. Schizophrenia has been estimated to be among the top ten causes of disability worldwide. As schizophrenia is common (roughly 1% point prevalence worldwide), the economic burden to society is substantial. Pathogenesis is unknown and treatment is palliative. Therefore understanding the genetic etiology could facilitate development of promising therapeutics
Autism Spectrum Disorder Genetics: Diverse Genes with Diverse Clinical Outcomes
The last several years have seen unprecedented advances in deciphering the genetic etiology of autism spectrum disorders (ASDs). Heritability studies have repeatedly affirmed a contribution of genetic factors to the overall disease risk. Technical breakthroughs have enabled the search for these genetic factors via genome-wide surveys of a spectrum of potential sequence variations, from common single-nucleotide polymorphisms to essentially private chromosomal abnormalities. Studies of copy-number variation have identified significant roles for both recurrent and nonrecurrent large dosage imbalances, although they have rarely revealed the individual genes responsible. More recently, discoveries of rare point mutations and characterization of balanced chromosomal abnormalities have pinpointed individual ASD genes of relatively strong effect, including both loci with strong a priori biological relevance and those that would have otherwise been unsuspected as high-priority biological targets. Evidence has also emerged for association with many common variants, each adding a small individual contribution to ASD risk. These findings collectively provide compelling empirical data that the genetic basis of ASD is highly heterogeneous, with hundreds of genes capable of conferring varying degrees of risk, depending on their nature and the predisposing genetic alteration. Moreover, many genes that have been implicated in ASD also appear to be risk factors for related neurodevelopmental disorders, as well as for a spectrum of psychiatric phenotypes. While some ASD genes have evident functional significance, like synaptic proteins such as the SHANKs, neuroligins, and neurexins, as well as fragile x mental retardation–associated proteins, ASD genes have also been discovered that do not present a clear mechanism of specific neurodevelopmental dysfunction, such as regulators of chromatin modification and global gene expression. In their sum, the progress from genetic studies to date has been remarkable and increasingly rapid, but the interactive impact of strong-effect genetic lesions coupled with weak effect common polymorphisms has not yet led to a unified understanding of ASD pathogenesis or explained its highly variable clinical expression. With an increasingly firm genetic foundation, the coming years will hopefully see equally rapid advances in elucidating the functional consequences of ASD genes and their interactions with environmental/experiential factors, supporting the development of rational interventions
Recommended from our members
Lack of Association of Rare Functional Variants in TSC1/TSC2 Genes with Autism Spectrum Disorder
Background: Autism spectrum disorder (ASD) is reported in 30 to 60% of patients with tuberous sclerosis complex (TSC) but shared genetic mechanisms that exist between TSC-associated ASD and idiopathic ASD have yet to be determined. Through the small G-protein Rheb, the TSC proteins, hamartin and tuberin, negatively regulate mammalian target of rapamycin complex 1 (mTORC1) signaling. It is well established that mTORC1 plays a pivotal role in neuronal translation and connectivity, so dysregulation of mTORC1 signaling could be a common feature in many ASDs. Pam, an E3 ubiquitin ligase, binds to TSC proteins and regulates mTORC1 signaling in the CNS, and the FBXO45-Pam ubiquitin ligase complex plays an essential role in neurodevelopment by regulating synapse formation and growth. Since mounting evidence has established autism as a disorder of the synapses, we tested whether rare genetic variants in TSC1, TSC2, MYCBP2, RHEB and FBXO45, genes that regulate mTORC1 signaling and/or play a role in synapse development and function, contribute to the pathogenesis of idiopathic ASD. Methods: Exons and splice junctions of TSC1, TSC2, MYCBP2, RHEB and FBXO45 were resequenced for 300 ASD trios from the Simons Simplex Collection (SSC) using a pooled PCR amplification and next-generation sequencing strategy, targeted to the discovery of deleterious coding variation. These detected, potentially functional, variants were confirmed by Sanger sequencing of the individual samples comprising the pools in which they were identified. Results: We identified a total of 23 missense variants in MYCBP2, TSC1 and TSC2. These variants exhibited a near equal distribution between the proband and parental pools, with no statistical excess in ASD cases (P > 0.05). All proband variants were inherited. No putative deleterious variants were confirmed in RHEB and FBXO45. Three intronic variants, identified as potential splice defects in MYCBP2 did not show aberrant splicing upon RNA assay. Overall, we did not find an over-representation of ASD causal variants in the genes studied to support them as contributors to autism susceptibility. Conclusions: We did not observe an enrichment of rare functional variants in TSC1 and TSC2 genes in our sample set of 300 trios
Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans
This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this recordSplit-hand/foot malformation type 1 is an autosomal dominant condition with reduced penetrance and variable expression. We report three individuals from two families with split-hand/split-foot malformation (SHFM) in whom next generation sequencing was performed to investigate the cause of their phenotype.Wellcome Trus
Genome-Wide Identification and Phenotypic Characterization of Seizure-Associated Copy Number Variations in 741,075 Individuals
Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice
CHD8 Regulates Neurodevelopmental Pathways Associated with Autism Spectrum Disorder in Neural Progenitors
Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10[superscript −8]) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10[superscript −10]). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.Simons FoundationNancy Lurie Marks Family FoundationNational Institutes of Health (U.S.) (Grant MH095867)National Institutes of Health (U.S.) (Grant MH095088)National Institutes of Health (U.S.) (Grant GM061354)March of Dimes Birth Defects FoundationCharles H. Hood FoundationBrain & Behavior Research FoundationAutism Genetic Resource ExchangeAutism Speaks (Organization)Pitt–Hopkins Research Foundatio
A structural variation reference for medical and population genetics
Structural variants (SVs) rearrange large segments of DNA(1) and can have profound consequences in evolution and human disease(2,3). As national biobanks, disease-association studies, and clinical genetic testing have grown increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD)(4) have become integral in the interpretation of single-nucleotide variants (SNVs)(5). However, there are no reference maps of SVs from high-coverage genome sequencing comparable to those for SNVs. Here we present a reference of sequence-resolved SVs constructed from 14,891 genomes across diverse global populations (54% non-European) in gnomAD. We discovered a rich and complex landscape of 433,371 SVs, from which we estimate that SVs are responsible for 25-29% of all rare protein-truncating events per genome. We found strong correlations between natural selection against damaging SNVs and rare SVs that disrupt or duplicate protein-coding sequence, which suggests that genes that are highly intolerant to loss-of-function are also sensitive to increased dosage(6). We also uncovered modest selection against noncoding SVs in cis-regulatory elements, although selection against protein-truncating SVs was stronger than all noncoding effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of samples, and estimate that 0.13% of individuals may carry an SV that meets the existing criteria for clinically important incidental findings(7). This SV resource is freely distributed via the gnomAD browser(8) and will have broad utility in population genetics, disease-association studies, and diagnostic screening.Peer reviewe
CHD8 suppression impacts on histone H3 lysine 36 trimethylation and alters RNA alternative splicing
Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in ‘regulation of RNA splicing’ and ‘mRNA catabolic process’. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD
- …