53 research outputs found

    Energy Spectra of Quantum Turbulence: Large-scale Simulation and Modeling

    Get PDF
    In 204832048^3 simulation of quantum turbulence within the Gross-Pitaevskii equation we demonstrate that the large scale motions have a classical Kolmogorov-1941 energy spectrum E(k) ~ k^{-5/3}, followed by an energy accumulation with E(k) ~ const at k about the reciprocal mean intervortex distance. This behavior was predicted by the L'vov-Nazarenko-Rudenko bottleneck model of gradual eddy-wave crossover [J. Low Temp. Phys. 153, 140-161 (2008)], further developed in the paper.Comment: (re)submitted to PRB: 5.5 pages, 4 figure

    Protein Transfection Study Using Multicellular Tumor Spheroids of Human Hepatoma Huh-7 Cells

    Get PDF
    Several protein transfection reagents are commercially available and are powerful tools for elucidating function of a protein in a cell. Here we described protein transfection studies of the commercially available reagents, Pro- DeliverIN, Xfect, and TuboFect, using Huh-7 multicellular tumor spheroid (MCTS) as a three-dimensional in vitro tumor model. A cellular uptake study using specific endocytosis inhibitors revealed that each reagent was internalized into Huh-7 MCTS by different mechanisms, which were the same as monolayer cultured Huh-7 cells. A certain amount of Pro-DeliverIN and Xfect was uptaken by Huh-7 cells through caveolae-mediated endocytosis, which may lead to transcytosis through the surface-first layered cells of MCTS. The results presented here will help in the choice and use of protein transfection reagents for evaluating anti-tumor therapeutic proteins against MCTS models

    First-principles Calculation on Screw Dislocation Core Properties in BCC Molybdenum

    No full text
    Abstract Predicting atomistic properties of a dislocation is a first step toward an understanding of plastic behavior of materials, in particular BCC metals. The core structure and Peierls stress of a screw dislocation in BCC metals have been studied over the years using the first-principles and empirical methods, however, their conclusions vary due to the inefficiency of the methods. We have executed first-principles calculations based on the density functional method, employing the most accurate 1 Ă— 1 Ă— 20 k-point samplings, to determine the core structure and Peierls stress of the a0/2[111] screw dislocation of molybdenum. We have concluded that the core has a 6-fold structure, and determined the Peierls stress of 1.8 GPa for the simple shear strain along the (-110)<111> direction
    • …
    corecore