845 research outputs found

    Multiband optical polarimetry of BL Lac objects with the Nordic Optical Telescope

    Full text link
    Optical polarization of seven selected BL Lac objects in UBVRI bands was studied with the Nordic Optical Telescope from December 10-14, 1999. Two of them, 3C 66A and PKS 0735+178, were monitored for 4 nights for a total integration time of 4.75 and 5.5 hours, respectively. Other objects (1Jy 0138-097, H 0414+009, PKS 0823-223, OJ287 and BL Lac) were observed sparsely during the run. Apart from PKS 0823-223 (more polarized than observed in the past), the sources show levels of flux and polarization consistent with results at previous epochs. 3C 66A and PKS 0735+178 were intensively observed during December 11 and 12 and exhibited variability of polarization, both on internight and intranight time scales. Wavelength dependence of polarization has been investigated, as well as circular polarization. The results are discussed within the standard model for BL Lacs.Comment: 11 pages, 7 figures, accepted to Astronomy & Astrophysic

    Color Variability of the Blazar AO 0235+16

    Full text link
    Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The light curves were compiled at the Turin Observatory from literature data and the results of observations obtained in the framework of the WEBT program (http://www.to.astro/blazars/webt/). The color variability of the blazar was studied in eight time intervals with a sufficient number of multicolor optical observations; JHK data are available for only one of these. The spectral energy distribution (SED) of the variable component remained constant within each interval, but varied strongly from one interval to another. After correction for dust absorption, the SED can be represented by a power law in all cases, providing evidence for a synchrotron nature of the variable component. We show that the variability at both optical and IR wavelengths is associated with the same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy Report

    Multiband optical polarimetry of the BL Lac object PKS 2155--304. Intranight and long term variability

    Get PDF
    The polarized and total flux of the BL Lac object PKS 2155-304 were monitored intensively and simultaneously in the optical UBVRI bands with the Turin photopolarimeter at the CASLEO 2.15 m telescope during 4 campaigns in June, August, November 1998 and August 1999. The effective observation time amounted to ~47 hours. PKS 2155-304 showed a linear polarization percentage (P) usually ranging between 3% and 7% and a polarization position angle (PA) mainly between 70 and 120 deg. The highest temporal resolution of our observations, 15 minutes, is unprecedented for polarimetric monitoring of this source, and has allowed us to detect amplitude variations of the linear polarization percentage from 6 to 7.5% in time scales of hours. In some nights the polarization percentage seems to increase toward shorter wavelengths, however the polarized spectrum does not vary significantly with time. The most remarkable variability event occurred on 1998 June 18, when the degree of linear polarization decreased by more than a factor 2 in one day in all bands, while the PA rotated by 90 deg. This is consistent with the presence of two emission components, of different polarization degree and position angle. Intranight variability of P and PA can be interpreted with small amplitude physical or geometrical changes within the jet. Measurements of the circular polarization over time intervals of days set upper limits of 0.2%. Simultaneous photometry taken with the Turin Photopolarimeter and with a CCD camera at Cordoba Astronomical Observatory did not show light variations correlated with those of the linearly polarized flux.Comment: 21 pages, 6 eps figures. Accepted for The Astrophysical Journal Supplement Serie

    Multi-frequency VLBA study of the blazar S5 0716+714 during the active state in 2004: I. Inner jet kinematics

    Full text link
    We observed the blazar \object{0716+714} with the VLBA during its active state in 2003-2004. In this paper we discuss multi-frequency analysis of the inner jet (first 1 mas) kinematics. The unprecedentedly dense time sampling allows us to trace jet components without misidentification and to calculate the component speeds with good accuracy. In the smooth superluminal jet we were able to identify and track three components over time moving outwards with relatively high apparent superluminal speeds (8.5-19.4 cc), which contradicts the hypothesis of a stationary oscillating jet in this source. Component ejections occur at a relatively high rate (once in two months), and they are accompanied by mm-continuum outbursts. Superluminal jet components move along wiggling trajectories, which is an indication of actual helical motion. Fast proper motion and rapid decay of the components suggest that this source should be observed with the VLBI at a rate of at least once in one or two months in order to trace superluminal jet components without confusion.Comment: 4 pages, 3 figures, Astronomy & Astrophysics Letter, language corrections adde

    A significant hardening and rising shape detected in the MeV/GeV nuFnu spectrum from the recently-discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    Get PDF
    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE, E>E> 100 GeV) blazar S4 0954+65 (z=0.368z=0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February, 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ\gamma-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8±0.11.8 \pm 0.1---compared with the 3FGL value (averaged over four years of observation) of 2.34±0.042.34 \pm 0.04. In contrast, Swift/XRT data showed a softening of the X-ray spectrum, with a photon index of 1.72±0.081.72 \pm 0.08 (compared with 1.38±0.031.38 \pm 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1<1 day) broadband spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of 1.0×106\gtrsim 1.0 \times 10^{-6} photons cm2^{-2} s1^{-1} (E>E> 100 MeV) and a hard spectral index of ΓGeV<2.0\Gamma_{\rm GeV} < 2.0 detected by Fermi-LAT on daily time scales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.Comment: 15 pages, 3 figures, 2 tables. Accepted by PAS

    Multifrequency Observations of the Gamma-Ray Blazar 3C 279 in Low-State during Integral AO-1

    Full text link
    We report first results of a multifrequency campaign from radio to hard X-ray energies of the prominent gamma-ray blazar 3C 279 during the first year of the INTEGRAL mission. The variable blazar was found at a low activity level, but was detected by all participating instruments. Subsequently a multifrequency spectrum could be compiled. The individual measurements as well as the compiled multifrequency spectrum are presented. In addition, this 2003 broadband spectrum is compared to one measured in 1999 during a high activity period of 3C 279.Comment: 4 pages including 6 figures, to appear in: 'Proc. of the 5th INTEGRAL Workshop', ESA SP-552, in pres

    Locating the γ-ray emission site in Fermi/LAT blazars – II. Multifrequency correlations

    Get PDF
    In an attempt to constrain and understand the emission mechanism of γ-rays, we perform a cross-correlation analysis of 15 blazars using light curves in millimetre, optical and γ-rays. We use discrete correlation function and consider only correlations significant at the 99 per cent level. A strong correlation was found between 37 and 95 GHz with a near-zero time delay in most of the sources, and ∼1 month or longer in the rest. A similar result was obtained between the optical and γ-ray bands. Of the 15 sources, less than 50 per cent showed a strong correlation between the millimetre and γ-ray or millimetre and optical bands. The primary reason for the lack of statistically significant correlation is the absence of a major outburst in the millimetre bands of most of the sources during the 2.5 yr time period investigated in our study. This may indicate that only the long-term variations or large flares are correlated between these bands. The variability of the sources at every waveband was also inspected using fractional rms variability (F_(var)). The F_(var) displays an increase with frequency reaching its maximum in the γ-rays

    Multiwavelength observations of Mkn 501 during the 1997 high state

    Full text link
    During the observation period 1997, the nearby Blazar Mkn 501 showed extremely strong emission and high variability. We examine multiwavelength aspects of this event using radio, optical, soft and hard X-ray and TeV data. We concentrate on the medium-timescale variability of the broadband spectra, averaged over weekly intervals. We confirm the previously found correlation between soft and hard X-ray emission and the emission at TeV energies, while the source shows only minor variability at radio and optical wavelengths. The non-linear correlation between hard X-ray and TeV fluxes is consistent with a simple analytic estimate based on an SSC model in which Klein-Nishina effects are important for the highest-energy electrons in the jet, and flux variations are caused by variations of the electron density and/or the spectral index of the electron injection spectrum. The time-averaged spectra are fitted with a Synchrotron Self-Compton (SSC) dominated leptonic jet model, using the full Klein-Nishina cross section and following the self-consistent evolution of relativistic particles along the jet, accounting for gamma-gamma absorption and pair production within the source as well as due to the intergalactic infrared background radiation. The contribution from external inverse-Compton scattering is tightly constrained by the low maximum EGRET flux and found to be negligible at TeV energies. We find that high levels of the X-ray and TeV fluxes can be explained by a hardening of the energy spectra of electrons injected at the base of the jet, in remarkable contrast to the trend found for gamma-ray flares of the flat-spectrum radio quasar PKS 0528+134.Comment: accepted for publication in ApJ, 31 pages, 11 figure
    corecore