49 research outputs found

    Magnetotransport of lanthanum doped RuSr2GdCu2O8 - the role of gadolinium

    Full text link
    Strongly underdoped RuSr_1.9La_0.1GdCu_2O_8 has been comprehensively studied by dc magnetization, microwave measurements, magnetoresistivity and Hall resistivity in fields up to 9 T and temperatures down to 1.75 K. Electron doping by La reduces the hole concentration in the CuO2 planes and completely suppresses superconductivity. Microwave absorption, dc resistivity and ordinary Hall effect data indicate that the carrier concentration is reduced and a semiconductor-like temperature dependence is observed. Two magnetic ordering transitions are observed. The ruthenium sublattice orders antiferromagnetically at 155 K for low applied magnetic field and the gadolinium sublattice antiferromagnetically orders at 2.8 K. The magnetoresistivity exhibits a complicated temperature dependence due to the combination of the two magnetic orderings and spin fluctuations. It is shown that the ruthenium magnetism influences the conductivity in the RuO2 layers while the gadolinium magnetism influences the conductivity in the CuO2 layers. The magnetoresistivity is isotropic above 4 K, but it becomes anisotropic when gadolinium orders antiferromagnetically.Comment: 7 pages, 9 figures, submitted to European Physical Journal

    Magneto-superconductivity of 100-atm O2-annealed RuSr2Gd1.5Ce0.5Cu2O10

    Full text link
    Studied 100-atm O2-annealed RuSr2Gd1.5Ce0.5Cu2O10 (Ru-1222) compound crystallized in a tetragonal I4/mmm space group crystal structure. Thermo-gravemetric (TG) analysis of the compound showed the release of oxygen and breaking to metallic constituents in two distinct steps at around 350 and 500 0C. The DC magnetization data (M vs. T) revealed magnetic transition at 100 K followed by superconducting transition at 40 K. Low field M vs. H hysteresis loop showed a lower critical field (Hc1) value of around 25 Oe. Ferromagnetic component is evidenced at 5, 10, 20 and 40 K. Near saturation field of above 5 Tesla is observed at 5 K. Zero-field returning moment (Mr) and zero-moment coercive field (Hc) values at 5 K are 0.35mB and 250 Oe. The resistance vs. temperature (R vs. T) behaviour of the sample confirmed superconductivity at around 43 K. Superconductivity transition (Tc) is broadened under magnetic field with strong granularity like steps.Comment: 16 pages including text and six figure

    Differences in dynamic perception of salty taste intensity between young and older adults

    Get PDF

    Tuning bands of PbSe for better thermoelectric efficiency

    Get PDF
    Improving the thermoelectric performance of PbSe over its previously reported maximum zT can be achieved by engineering its electronic band structure. We demonstrate here, using optical absorption spectra, first principles calculations, and temperature dependent transport measurements, that alloying PbSe with SrSe leads to a dramatic change of the band structure that increases the thermoelectric figure of merit, zT. The temperature where the two valence bands converge decreases with Sr addition. The zT value, when the carrier density is optimized, increases with Sr addition in Pb_(1−x)Sr_xSe and when x = 0.08 a maximum zT of 1.5 at 900 K is achieved. The net benefit in zT comes from the band structure tuning even though in other thermoelectric solid solutions it is the thermal conductivity reduction from disorder that leads to net zT improvement

    Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

    Full text link
    We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion εyz+εzx+εxy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron

    Detection of Neutron Scattering from Phase IV of Ce0.7La0.3B6: A Confirmation of the Octupole Order

    Full text link
    We have performed a single crystal neutron scattering experiment on Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically. Below the phase transition temperature 1.5 K of phase IV, weak but distinct superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l = odd number) have been observed by neutron scattering for the first time. The intensity of the superlattice reflections is stronger for high scattering vectors, which is quite different from the usual magnetic form factor of magnetic dipoles. This result directly evidences that the order parameter of phase IV has a complex magnetization density, consistent with the recent experimental and theoretical prediction in which the order parameter is the magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron scattering experiments using short wavelength neutrons, as done in this study, could become a general method to study the high-rank multipoles in f electron systems.Comment: 4 pages, 4 figure

    Lattice Distortion and Octupole Ordering Model in CexLa1-xB6

    Full text link
    Possible order parameters of the phase IV in CexLa1-xB6 are discussed with special attention to the lattice distortion recently observed. A \Gamma_{5u}-type octupole order with finite wave number is proposed as the origin of the distortion along the [111] direction. The \Gamma_8 crystalline electric field (CEF) level splits into three levels by a mean field with the \Gamma_{5u} symmetry. The ground and highest singlets have the same quadrupole moment, while the intermediate doublet has an opposite sign. It is shown that any collinear order of \Gamma_{5u}-type octupole moment accompanies the \Gamma_{5g}-type ferro-quadrupole order, and the coupling of the quadrupole moment with the lattice induces the distortion. The cusp in the magnetization at the phase transition is reproduced, but the internal magnetic field due to the octupole moment is smaller than the observed one by an order of magnitude.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Invariant Form of Hyperfine Interaction with Multipolar Moments - Observation of Octupolar Moments in NpO2_{2} and CeB6_{6} by NMR -

    Full text link
    The invariant form of the hyperfine interaction between multipolar moments and the nuclear spin is derived, and applied to discuss possibilities to identify the antiferro-octupolar (AFO) moments by NMR experiments. The ordered phase of NpO2_{2} and the phase IV of Ce1x_{1-x}Lax_{x}B6_{6} are studied in detail. Recent 17^{17}O NMR for polycrystalline samples of NpO2_{2} are discussed theoretically from our formulation. The observed feature of the splitting of 17^{17}O NMR spectrum into a sharp line and a broad line, their intensity ratio, and the magnetic field dependence of the shift and of the width can be consistently explained on the basis of the triple \bq AFO ordering model proposed by Paix\~{a}o {\it et. al.} Thus, the present theory shows that the 17^{17}O NMR spectrum gives a strong support to the model. The 4 O sites in the fcc NpO2_2 become inequivalent due to the secondary triple \bq ordering of AF-quadrupoles: one cubic and three non-cubic sites. It turns out that the hyperfine field due to the antiferro-dipole and AFO moments induced by the magnetic field, and the quadrupolar field at non-cubic sites are key ingredients to understand the observed spectrum. The controversial problem of the nature of phase IV in Ce1x_{1-x}Lax_{x}B6_{6} is also studied. It is pointed out that there is a unique feature in the NMR spectra, if the Γ5\Gamma_{5}(Txβ=Tyβ=TzβT^{\beta}_{x}=T^{\beta}_{y}=T^{\beta}_{z}) AFO ordering is realized in Ce1x_{1-x}Lax_{x}B6_{6}. Namely, the hyperfine splitting of a B atom pair on the (1/2,1/2,±u)({1/2},{1/2},\pm u) sites crosses zero on the (11ˉ0)(1\bar{1}0) plane when the magnetic field is rotated around the [001][001] axis.Comment: 22 pages, 2 figure

    Spin Glass Behavior in RuSr2Gd1.5Ce0.5Cu2O10

    Full text link
    The dynamics of the magnetic properties of polycrystalline RuSr2Gd1.5Ce0.5Cu2O10 (Ru-1222) have been studied by ac susceptibility and dc magnetization measurements, including relaxation and ageing studies. Ru-1222 is a reported magneto-superconductor with Ru spins magnetic ordering at temperatures near 100 K and superconductivity in Cu-O2 planes below Tc ~ 40 K. The exact nature of Ru spins magnetic ordering is still debated and no conclusion has been reached yet. In this work, a frequency-dependent cusp was observed in ac susceptibility vs. T measurements, which is interpreted as a spin glass transition. The change in the cusp position with frequency follows the Vogel-Fulcher law, which is commonly accepted to describe a spin glass with magnetically interacting clusters. Such interpretation is supported by themoremanaent magnetization (TRM) measurements at T = 60 K. TRM relaxations are well described by a stretched exponential relation, and present significant ageing effects.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
    corecore