10 research outputs found

    A rapid and convergent synthesis of the integrastatin core

    Get PDF
    The tetracyclic core of the integrastatin natural products has been prepared in a convergent and rapidmanner. Our strategy relies upon a palladium(II)-catalyzed oxidative cyclization to form the central [3.3.1]-dioxabicycle of the natural product core. Overall, the core has been completed in only 4 linear steps from known compounds

    Aryne Acyl-Alkylation in the General and Convergent Synthesis of Benzannulated Macrolactone Natural Products: An Enantioselective Synthesis of (−)-Curvularin

    Get PDF
    A general approach for the synthesis of benzannulated macrolactone natural products utilizing an aryne acyl-alkylation reaction is described. Toward this end, the total syntheses of the natural products (−)-curvularin, curvulin, and (−)-diplodialide C are reported. Furthermore, the aryne insertion technology has enabled the rapid conversion of simple diplodialide natural products to curvularin, thereby connecting these two biosynthetically distinct classes of compounds via synthetic methods

    Regioselective Reactions of Highly Substituted Arynes

    Get PDF
    The fully regioselective reactivity of four new highly substituted silyl aryl triflate aryne precursors in aryne acyl-alkylation, acyl-alkylation/condensation, and heteroannulation reactions is reported. The application of these more complex arynes provides access to diverse natural product scaffolds and obviates late-stage functionalization of aromatic rings

    Concise total syntheses of (–)-jorunnamycin A and (–)-jorumycin enabled by asymmetric catalysis

    Get PDF
    The bis-tetrahydroisoquinoline (bis-THIQ) natural products have been studied intensively over the past four decades for their exceptionally potent anticancer activity, in addition to strong gram-positive and -negative antibiotic character. Synthetic strategies toward these complex polycyclic compounds have relied heavily on electrophilic aromatic chemistry, such as the Pictet-Spengler reaction, that mimics their biosynthetic pathways. Herein we report an approach to two bis-THIQ natural products, jorunnamycin A and jorumycin, that instead harnesses the power of modern transition-metal catalysis for the three major bond-forming events and proceeds with high efficiency (15 and 16 steps, respectively). By breaking from biomimicry, this strategy allows for the preparation of a more diverse set of non-natural analogs

    A Comprehensive History of Arynes in Natural Product Total Synthesis

    No full text
    Within 14 years of the seminal experiments of J. D. Roberts leading to the first proposal of the structure of benzyne (1), synthetic organic chemists recognized the potential to exploit this highly reactive intermediate (and its substituted variants) in the total synthesis of natural products. More specifically, it was recognized that arynes offered the strategic advantage of rapidly functionalizing an aromatic ring by forming multiple carbon− carbon or carbon−heteroatom bonds in a single operation, often in a regioselective manner. Initially, the scope of synthetic applications was somewhat limited by the harsh conditions required to produce the aryne species. Many of these methods required strong bases, such as n-BuLi, or high temperatures (Scheme 1). However, with the development of milder methods for the generation of arynes came increased interest in employing them in the synthesis of more complex polycyclic systems. Most recently, the use of o-silyl aryl triflates as aryne precursors has allowed generation of the reactive intermediate under almost neutral conditions. To date, over 75 individual natural products have been prepared using arynes to generate key synthetic intermediates. Herein are recounted the reports of total syntheses that utilize arynes in ways that build complexity or introduce motifs essential to the completion of their targets. The methods by which the authors featured in this review accomplish this task reflect the versatility of arynes as reactive intermediates for synthesis (Scheme 2). For the purposes of organization, the syntheses are divided into subgroups on the basis of the type of aryne transformation: (i) nucleophilic additions or multicomponent reactions, (ii) σ-bond insertion reactions, (iii) [4 + 2]- and [2 + 2]-cycloaddition strategies, and (iv) metal-catalyzed aryne reactions

    A Comprehensive History of Arynes in Natural Product Total Synthesis

    No full text
    corecore