13 research outputs found
Modélisation, commande et supervision d'un système multi-sources connecté au réseau avec stockage tampon de l'énergie électrique via le vecteur hydrogène
The limited reserves of fossil fuel and the pollution gases produced pave the way to promising alternativeRenewable Energy Sources (RESs) such as Solar Energy Sources (SESs) and Wind Energy Sources (WESs).SESs and WESs are freely available and environmentally friendly. However, RESs are intermittent in nature.Therefore, the smoothing of power fluctuations by storing the energy during periods of oversupply and restore it tothe grid when demand becomes necessary. Accordingly, Energy Storage Systems (ESSs) can be appropriatelyused for this purpose.Using several energy sources for constructing HPSs alongside with ESS will require an energy managementstrategy to achieve minimum HPS cost and optimal balance between energy generation and energy consumption.This energy management method is a mechanism to achieve an ideal energy production and to conveniently satisfythe load demand at relatively high efficiency.In this thesis, a Hybrid Power System (HPS) including Renewable Energy Sources (RESs) such as main sourcescombined with Gas Micro-Turbine (GMT) and hydrogen storage system such as Back-up Sources (BKUSs) hasbeen presented. The aim of this hybridization is to build a reliable system, which is able to supply the load andhaving the ability to store the excess energy in hydrogen form and reuse it later when demanded. Consequently, thestored energy at the end of each cycle will be zero and a minimum generated power cost is achieved. In addition,partial shading problem of Photovoltaic (PV) panels is comprehensively studied and a new solution based on simpleswitches and Fuzzy Logic Control (FLC) integrated into dSPACE electronic card is created. Consequently, a realtime PV panels reconfiguration and disconnecting shaded ones is performed and minimum power losses isachieved. Then, the PV panels are connected to a Proton Exchange Membrane Electrolyser (PEM ELS). Theemitted temperature by the PV panels is transferred to the endothermic element PEM ELS. Consequently, anefficiency enhancement of the hybrid system PVPEM ELS is realized.Les réserves limitées de combustibles fossiles et la pollution entrainée par les gaz produits ouvrent la voie à desressources énergétiques renouvelables (RER) alternatives et prometteuses telles que les ressources solaires (RS)et les ressources éoliennes (RE). Ces ressources sont librement disponibles et respectueuses de l'environnement.Cependant, les RER sont de nature intermittente. Par conséquent, il existe un besoin de lissage des fluctuations depuissance en stockant l'énergie pendant les périodes de surproduction pour la restituer au réseau lorsque lademande énergétique devient importante. Les systèmes de stockage de l'énergie (SSE) peuvent alors être utilisésde manière appropriée à cette fin.L'utilisation de plusieurs sources d'énergie et de stockeurs pour construire des systèmes de puissance hybrides(SPH) exige une stratégie de gestion de l'énergie pour atteindre le minimum de coût des SPH et un équilibre entrela production et la consommation de l'énergie. Cette méthode de gestion de l'énergie est un mécanisme pourobtenir une production d'énergie idéale et pour satisfaire convenablement la demande de charge à rendementrelativement élevé.Dans cette thèse, un SPH intégrant production électrique photovoltaïque, éolienne, une micro-turbine à gaz ainsiqu'un système de stockage de l'électricité par le vecteur hydrogène est considéré. Le but de cette hybridation estde construire un système fiable, qui est en mesure de fournir la charge et qui a la capacité de stocker l'énergieexcédentaire sous forme hydrogène et de la réutiliser plus tard. En outre, le problème d'ombrage partiel dePanneaux Photovoltaïques est étudié de manière approfondie. Une nouvelle solution basée sur des interrupteurssimples et un contrôle par logique floue intégré dans une carte électronique dSPACE a été proposée. Unereconfiguration des panneaux photovoltaïques en temps réel et de déconnexion de ceux ombragés est égalementeffectuée en cherchant à minimiser les pertes de puissance. Le couplage thermique entre ces panneauxphotovoltaïques et un électrolyseur à membrane polymère est également étudié, à l'échelle système. Enrécupérant une partie de l'énergie thermique reçue par les panneaux, une amélioration du rendement du systèmehybride PPVELS MEP est réalisé
Amélioration du rendement d'un système hybride basé sur une double commande MPPT et logique floue
National audienceRESUME – Cet article traite l'amélioration du rendement d’un système hybride Panneaux Photovoltaïques-Electrolyseur à Membrane Echangeuse de Protons (PPV-ELS MEP). La chaleur dégagée par les PPV a un impact néfaste sur le rendement de ces derniers. Par contre, elle est nécessaire pour le fonctionnement de l’ELS, cette chaleur est fournie à l’ELS par les PPV en utilisant une pompe à eau. Deux niveaux de contrôle ont été appliqués pour réaliser cet objectif. D’abord, l’approche Maximum Power Point Tracking (MPPT) a été proposée pour maximiser l'énergie captée par les PPV. Ensuite, le chauffage de l'eau entrant l’ELS MEP a été contrôlé à l'aide d’une technique basée sur la Logique Floue (LF) ainsi qu’un contrôleur Proportionnel-Intégral (PI). Le formalisme de Représentation Energétique Macroscopique (REM) a été utilisé pour construire un modèle représentant le système hybride étudié.ABSTRACT – This article discusses the efficiency enhancement of a hybrid system Photovoltaic-Proton Exchange Membrane Electrolyser (PV-PEM ELS). The produced heat by the PV panels has a negative effect on its efficiency. However, it is necessary for PEM ELS work. Therefore, it has been provided by the PV panels using a water pump. Two levels of control have been applied for this objective. First, Maximum Power Point Tracking (MPPT) approach has been proposed to maximize the captured energy by PV panels. At the same time, water heating inside PEM ELS has been controlled using both FL and a Proportional-Integral (PI) controls. The Energetic Macroscopic Representation (EMR) has been used to build a model representing the studied hybrid system
Modelling, control and supervision of multi-source system connected to the network with a buffer storage of electrical energy via hydrogen vector
Les réserves limitées de combustibles fossiles et la pollution entrainée par les gaz produits ouvrent la voie à desressources énergétiques renouvelables (RER) alternatives et prometteuses telles que les ressources solaires (RS)et les ressources éoliennes (RE). Ces ressources sont librement disponibles et respectueuses de l'environnement.Cependant, les RER sont de nature intermittente. Par conséquent, il existe un besoin de lissage des fluctuations depuissance en stockant l'énergie pendant les périodes de surproduction pour la restituer au réseau lorsque lademande énergétique devient importante. Les systèmes de stockage de l'énergie (SSE) peuvent alors être utilisésde manière appropriée à cette fin.L'utilisation de plusieurs sources d'énergie et de stockeurs pour construire des systèmes de puissance hybrides(SPH) exige une stratégie de gestion de l'énergie pour atteindre le minimum de coût des SPH et un équilibre entrela production et la consommation de l'énergie. Cette méthode de gestion de l'énergie est un mécanisme pourobtenir une production d'énergie idéale et pour satisfaire convenablement la demande de charge à rendementrelativement élevé.Dans cette thèse, un SPH intégrant production électrique photovoltaïque, éolienne, une micro-turbine à gaz ainsiqu'un système de stockage de l'électricité par le vecteur hydrogène est considéré. Le but de cette hybridation estde construire un système fiable, qui est en mesure de fournir la charge et qui a la capacité de stocker l'énergieexcédentaire sous forme hydrogène et de la réutiliser plus tard. En outre, le problème d'ombrage partiel dePanneaux Photovoltaïques est étudié de manière approfondie. Une nouvelle solution basée sur des interrupteurssimples et un contrôle par logique floue intégré dans une carte électronique dSPACE a été proposée. Unereconfiguration des panneaux photovoltaïques en temps réel et de déconnexion de ceux ombragés est égalementeffectuée en cherchant à minimiser les pertes de puissance. Le couplage thermique entre ces panneauxphotovoltaïques et un électrolyseur à membrane polymère est également étudié, à l'échelle système. Enrécupérant une partie de l'énergie thermique reçue par les panneaux, une amélioration du rendement du systèmehybride PPVELS MEP est réaliséeThe limited reserves of fossil fuel and the pollution gases produced pave the way to promising alternativeRenewable Energy Sources (RESs) such as Solar Energy Sources (SESs) and Wind Energy Sources (WESs).SESs and WESs are freely available and environmentally friendly. However, RESs are intermittent in nature.Therefore, the smoothing of power fluctuations by storing the energy during periods of oversupply and restore it tothe grid when demand becomes necessary. Accordingly, Energy Storage Systems (ESSs) can be appropriatelyused for this purpose.Using several energy sources for constructing HPSs alongside with ESS will require an energy managementstrategy to achieve minimum HPS cost and optimal balance between energy generation and energy consumption.This energy management method is a mechanism to achieve an ideal energy production and to conveniently satisfythe load demand at relatively high efficiency.In this thesis, a Hybrid Power System (HPS) including Renewable Energy Sources (RESs) such as main sourcescombined with Gas Micro-Turbine (GMT) and hydrogen storage system such as Back-up Sources (BKUSs) hasbeen presented. The aim of this hybridization is to build a reliable system, which is able to supply the load andhaving the ability to store the excess energy in hydrogen form and reuse it later when demanded. Consequently, thestored energy at the end of each cycle will be zero and a minimum generated power cost is achieved. In addition,partial shading problem of Photovoltaic (PV) panels is comprehensively studied and a new solution based on simpleswitches and Fuzzy Logic Control (FLC) integrated into dSPACE electronic card is created. Consequently, a realtime PV panels reconfiguration and disconnecting shaded ones is performed and minimum power losses isachieved. Then, the PV panels are connected to a Proton Exchange Membrane Electrolyser (PEM ELS). Theemitted temperature by the PV panels is transferred to the endothermic element PEM ELS. Consequently, anefficiency enhancement of the hybrid system PVPEM ELS is realized
Hybrid Renewable Energy System connected to the Grid: the Hydrogen Storage Solution
International audienceA hybrid Renewable Energy System (HRES), based on a wind energy system and a solar energy system with hydrogen based long-term storage unit is discussed in this paper. Storage elements are divided into long-term storage elements (here the hydrogen cylinders) and short-term storage elements (batteries and supercapacitors). The importance of electrolyzer is coming from producing hydrogen that can be used when there is insufficient energy at the peak load. The electrolyzer works together with the fuel cell stack to make a hydrogen-based energy storage system. The HRES consists of elements that have different voltages and currents levels and all of them are connected to one single DC bus. The connection between these elements poses problem of harmonics distortion on the grid, thisproblem can nevertheless be solved by using static converters and suitable control method
Reconfiguration solution for shaded PV panels using switching control
International audienceThis paper applies a new dynamical electrical array reconfiguration strategy on photovoltaic (PV) panels arrangement based on the connection of all PV panels on two parallel groups to reach the 24 V requested by the considered load and providing a maximum output current by connecting in series the two groups. If one of the PV panels or more are shaded, dusty or faulty the connection of the others in the same group will be automatically modified to maintain the requested load output voltage. This dynamical reconfiguration allows also limiting the lost power, due to the incriminate panel, by switching off this panels and reconfiguration the topology. As a result, a real time adaptation of a switch matrix allows a self-ability to maintain a constant load voltage. Moreover, a minimum number of PV panels are switched off by isolating the effect of unhealthy panels. In addition, the proposed solution can also be applied for identifying and locating the shaded, dusty and faulty panel. Experimental setup has been built and the results validate the proposed method
Techno-economic Analysis of Wind Turbines in Algeria
International audienceIn this study, the wind energy potential and the unit energy cost related to six wind turbines in the city of Illizi in Southeast of Algeria are investigated. The hourly measured data (wind, pressure and temperature) observed during the period 2005–2014 at meteorological station in Illizi were used. An analysis of the collected data using the Weibull statistical method was made. The preliminary results were used to evaluate the power density in this region. Moreover, technical data of six chosen wind turbine models were analyzed to select the best appropriate turbine according to the techno economic analysis. The annual energy output of the selected wind turbines was calculated and the energy cost for each model was evaluated using two different methods. Input parameters affecting the cost, return on investment and payback period are also studied. For the 1MW wind turbine which, according to the economic analysis, is found to be the most suitable for this region, the cost of energy per kWh varies between 0.0388 with PVC method and in range of 0.0878 with LCOE method
Energy management hypothesis for hybrid power system of H2/WT/PV/GMT via AI techniques
International audienceThis paper aims to attain an efficient and optimized energy management operation of Hybrid Power System (HPS) by using Artificial Intelligent (AI) controllers. The HPS comprises Wind Turbines (WTs) and Photovoltaic (PV) panels such as primary Renewable Energy Sources (RESs) in addition to both Fuel Cells (FCs) and Gas Micro–Turbines (GMTs) which are used as Backup Sources (BKUSs).To avoid the undesired negative impacts on the HPS functionality because of the RESs intermittency, the Hydrogen Storage System (HSS) is integrated into the system. Two different energy management strategies based on Neural Networks (NN) and Fuzzy Logic Control (FLC) respectively are applied to the HPS for minimizing the energy production cost and keeping the buffer role of HSS. Using MATLAB™, the proposed two AI introduced solutions are used for reaching adequate energy management operation performance for the overall HPS during 24 h load variation. From the numerical simulations, the superiority of the FLC over the NN control approach is discussed. The proposed HSS can positively act as a buffer solution to avoid drawbacks of RESs during unexpected load peaks and/or discontinuous energy production
New Connection of DFIG Wind Turbines to the Grid to Minimize Converter Number
International audienceThe Doubly Fed Induction Generator DFIG wind turbines are the most chosen for the grid connection thanks to its dynamic, but the disconnection of these wind turbines during line fault to protect its converters don’t conform the new grid codes which prohibit disconnection of wind turbine during line fault, and recommend them to contribute in grid stability. This paper proposes a new model of DFIG wind turbine connection between them, where the number of converters in grid side is reduced and the connection of wind turbines in parallel to the grid is transformed to series-parallel connection, the aim of this new model of connection are to reduce the converters number in the grid side, limit current transient in converters, double the voltage, and reduce the investment cost. The total power generated by the farm before this new connection will be kept unchanged thanks to the installed switch in the model, a fuzzy logic program is developed to control switches
Water heating control for efficiency enhancement of Proton Exchange Membrane Electrolyser using Photovoltaic panels and MPPT
International audienceThe studied system consists of a 59 kW Proton Exchange Membrane (PEM) electrolyser 6 powered by a photovoltaic (PV) generator through a boost converter for H2 production. The PV panels were sized to 63 kW according to the Belfort region in France, and controlled using Maximum Power Point Tracking (MPPT) technique allowing the extraction of the maximum available power. It is also shown that the produced H2 flow is increased if the input water is heated. The optimal input water temperature is investigated in order to maximize the produced H2 by taking into account the physical constraints when using a maximal temperature in a given system and the limitation to avoid the transformation of the water into vapor. Fuzzy Logic (FL) control is used to determine the instantaneous optimal water temperature and a simple proportional integral (PI) controller heats the inlet water to the optimal temperature. It is also shown that the pressure affects the system efficiency and temperature, and the proposed controller manages the water temperature and pressure. The proposed system design allows the production of H2 and the extraction of the maximal available solar power. The electrolyser efficiency is substantially increased as a result of using MPPT for the PV panels and FL with PI as water heating controllers
Optimal energy control of a PV-fuel cell hybrid system
International audienceThis paper deals with a real time implementation of a fuzzy logic-based power management of a small scale generation hybrid power system. The system consists of a photovoltaic array and a fuel cell stack, supported by a single-phase grid that supplies a stand-alone AC load. The proposed supervisory algorithm guaranties the system to switch smart between two operation modes, according to the load demand, the gas level and the PV availability. Obviously, the PV side DC–DC converter is controlled to track permanently the maximum power point by using a fuzzy logic MPPT method; whereas, the fuel cell stack and the grid converters are tuned to cover the remaining power, or alternatively, injecting the exceeding power to the utility. Besides, to feed the AC load with a pure sine wave, a Back stepping algorithm is proposed to control the front-end single-phase inverter. To test the effectiveness of the proposed algorithms, experimental results obtained with a given load profile are presented and commented