757 research outputs found

    Chemotaxis When Bacteria Remember: Drift versus Diffusion

    Get PDF
    {\sl Escherichia coli} ({\sl E. coli}) bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise between drift toward favorable regions and accumulation in favorable regions. A number of earlier studies assume that a bacterium resets its memory at tumbles -- a fact not borne out by experiment -- and make use of approximate coarse-grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In the adaptive case, favorable drift occurs together with favorable accumulation. We derive our results from detailed simulations and a variety of analytical arguments. In particular, we introduce a new coarse-grained description of chemotaxis as biased diffusion, and we discuss the way it departs from older coarse-grained descriptions.Comment: Revised version, journal reference adde

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance

    Finding the Maximal Independent Sets of a Graph Including the Maximum Using a Multivariable Continuous Polynomial Objective Optimization Formulation

    Get PDF
    We propose a multivariable continuous polynomial optimization formulation to find arbitrary maximal independent sets of any size for any graph. A local optima of the optimization problem yields a maximal independent set, while the global optima yields a maximum independent set. The solution is two phases. The first phase is listing all the maximal cliques of the graph and the second phase is solving the optimization problem. We believe that our algorithm is efficient for sparse graphs, for which there exist fast algorithms to list their maximal cliques. Our algorithm was tested on some of the DIMACS maximum clique benchmarks and produced results efficiently. In some cases our algorithm outperforms other algorithms, such as cliquer

    A Characterization of Scale Invariant Responses in Enzymatic Networks

    Get PDF
    An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately) the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO), whose validity we show is both necessary and sufficient for scale invariance of enzymatic networks. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions

    Cervical adenocarcinoma presenting as a cardiac tamponade in a 57-year-old woman: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pericardial effusion as a complication of malignant gynecological disorders is rare. Few cases of endometrial cancer, squamous cell carcinoma of the cervix, ovarian cancer and uterine carcinosarcoma have been previously reported. We report the first case of cardiac tamponade secondary to a cervical adenocarcinoma.</p> <p>Case presentation</p> <p>A 54-year-old Caucasian woman, without any relevant medical history and no gynecological aftercare, was admitted to our hospital emergency room with severe dyspnea. Echocardiography revealed severe pericardial effusion with a swinging heart. An emergency pericardial drainage was performed through a pericardial window, which permitted the draining of 700 mL of bloody fluid and a pericardial biopsy. Cytological examination of the fluid revealed atypical cells, and the biopsy specimen showed tumor emboli suggestive of adenocarcinoma. Magnetic resonance imaging showed a 35 mm cervical lesion indicative of an endocervical tumor. Exploratory laparoscopy revealed diffuse peritoneal lesions and histological examination of cervical curettage showed a poorly differentiated micropapillary adenocarcinoma of the cervix.</p> <p>Conclusion</p> <p>Carcinomatous pericarditis as the first symptom of a malignant gynecological adenocarcinoma has not, to the best of our knowledge, been documented before. This case highlights the extreme severity of pericardial effusion secondary to cervical adenocarcinoma, a sign of advanced disease. Gynecological malignancies have to be considered in cases of neoplastic pericardial effusion.</p

    Disclosure of cancer diagnosis and prognosis: a survey of the general public's attitudes toward doctors and family holding discretionary powers

    Get PDF
    BACKGROUND: This study aimed to ask a sample of the general population about their preferences regarding doctors holding discretionary powers in relation to disclosing cancer diagnosis and prognosis. METHODS: The researchers mailed 443 questionnaires to registered voters in a ward of Tokyo which had a socio-demographic profile similar to greater Tokyo's average and received 246 responses (response rate 55.5%). We describe and analysed respondents' attitudes toward doctors and family members holding discretionary powers in relation to cancer diagnoses disclose. RESULTS: Amongst respondents who wanted full disclosure about the diagnosis without delay, 117 (69.6 %) respondents agreed to follow the doctor's discretion, whilst 111 (66.1 %) respondents agreed to follow the family member's decision. For respondents who preferred to have the diagnosis and prognosis withheld, 59 (26.5 %) agreed to follow the doctor's decision, and 79 (35.3 %) of respondents agreed with following family member's wishes. CONCLUSIONS: The greater proportion of respondents wants or permits disclosure of cancer diagnosis and prognosis. In patients who reveal negative attitudes toward being given a cancer disclosure directly, alternative options exist such as telling the family ahead of the patient or having a discussion of the cancer diagnosis with the patient together with the family. It is recommended that health professionals become more aware about the need to provide patients with their cancer diagnosis and prognosis in a variety of ways

    Hypernovae and Other Black-Hole-Forming Supernovae

    Full text link
    During the last few years, a number of exceptional core-collapse supernovae (SNe) have been discovered. Their kinetic energy of the explosions are larger by more than an order of magnitude than the typical values for this type of SNe, so that these SNe have been called `Hypernovae'. We first describe how the basic properties of hypernovae can be derived from observations and modeling. These hypernovae seem to come from rather massive stars, thus forming black holes. On the other hand, there are some examples of massive SNe with only a small kinetic energy. We suggest that stars with non-rotating black holes are likely to collapse "quietly" ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). We present distinct nucleosynthesis features of these two types of "black-hole-forming" supernovae. Hypernova nucleosynthesis is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the most Fe deficient star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and Space Science; Kluwer) ed. C. L. Fryer (2003

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source

    Get PDF
    [[abstract]]Reports of tyrosinase inhibitors from microorganisms are rare. A tyrosinase inhibitor- and insecticidal materials-producing bacterium, strain TKU026, was isolated from Taiwanese soil and identified as Burkholderia cepacia. Among the tested chitin-containing materials, squid pen best enhanced the production of tyrosinase inhibitors and insecticidal materials. The tyrosinase inhibitory activity (5000 U/mL) and insecticidal activity (81%) against Drosophila larvae was maximised after cultivation on 1% squid-pen containing medium for three days. The tyrosinase inhibitory activity persisted even when the culture was treated with acidic or alkaline conditions of pH 3 or 11. The activities of both tyrosinase inhibitors and insecticide remained at 100%, even after treatment at 100℃ for 30 min. The culture supernatant after three days of cultivation also showed antifungal activity against Aspergillus fumigatus and Fusarium oxysporum with maximal activities of 100% and 80%, respectively, but no antibacterial activity against Escherichia coli was observed. The tyrosinase inhibitors were assumed to be polyphenolic compounds according to the results of chromatography.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子版[[countrycodes]]NL
    corecore