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Abstract. We propose a multivariable continuous polynomial optimiza-
tion formulation to find arbitrary maximal independent sets of any size
for any graph. A local optima of the optimization problem yields a maxi-
mal independent set, while the global optima yields a maximum indepen-
dent set. The solution is two phases. The first phase is listing all the max-
imal cliques of the graph and the second phase is solving the optimization
problem. We believe that our algorithm is efficient for sparse graphs, for
which there exist fast algorithms to list their maximal cliques. Our algo-
rithm was tested on some of the DIMACS maximum clique benchmarks
and produced results efficiently. In some cases our algorithm outperforms
other algorithms, such as cliquer.

Keywords: Independent set, continuous optimization, MATLAB, max-
imal cliques, sparse graphs.

1 Introduction

The maximum independent set problem and the maximal independent set prob-
lem of a certain size and the related problems of maximum/maximal cliques
are important problems in combinatorial optimization. They have many appli-
cations in diverse range of domains such as computer vision/pattern recogni-
tion, information/coding theory, molecular biology and scheduling. As the prob-
lems are NP-hard, it is unlikely there will be an ultimate solution to the prob-
lems unless P=NP. However, many algorithms and heuristics were proposed
to solve the problems for certain graphs [1–4]. In this paper we confine our-
selves with quadratic and continuous programming formulations to find the max-
imum(maximal) independent set(s). We propose new quadratic and continuous
polynomial formulations to find these graph invariants. Our formulations are
most suitable for sparse graphs, since we need to list the maximal cliques of
the graph first to find the maximum(maximal) independent set(s). Second the
nonlinear optimization solvers - we used matlab - are more efficient for sparse
graphs. The paper is organized as follows: section 1 is the introduction, section 2
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is the literature review of mainly continuous optimization algorithms to solve the
independent set problem, section 3.1 explains our formulation using a quadratic
objective function, section 3.2 extends that formulation to multivariable polyno-
mial objective function formulation, section 4 gives a second proof to our main
result, section 5 gives a geometric third proof to our formulation, section 6 gives
examples and extensions to our formulation, section 7 are results obtained by
applying our algorithm to DIMACS list of clique benchmarks and finally section
8 is the conclusion.

2 Literature Review

First of all, assume we have a finite graph G(N ,L). N is the set of N vertices
and L is the set of L edges. Associate with each vertex i a continuous variable
θi.

N.Z. Shor [5] proved that the binary formulation in Eq. 1 is equivalent to the
following quadratic optimization formulation:

max θ1 + θ2 + ...+ θN

θiθj = 0,∀(i, j) ∈ L

θ2i − θi = 0, i = 1, 2, ..., N

and reported good computational results. In [6] Motzkin and Straus found a
noteworthy relation between the maximum clique of a graph and the following
quadratic programming problem. They proved that the global optima of:

max f(x) =
1

2
θTAGθ

eT θ = 1

θ ≥ 0

is given by
1

2
(1− 1

ω(G)
)

where ω(G) is the clique number of graph G, AG is the adjacency matrix of
the graph and e is an N dimensional vector of all 1s. Harant et al [7, 8] proved
the following continuous and quadratic formulations about the independence
number of a graph. First the continuous polynomial formulation is given by:

α(G) = max
0≤θi≤1,i=1,...,N

F (x) = max
0≤θi≤1,i=1,...,N

N∑
i=1

(1 − θi) Π
(i,j)∈L

θj

and the quadratic formulation is given by:
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α(G) = max
0≤θi≤1,i=1,...,N

H(x) = max
0≤θi≤1,i=1,...,N

(

N∑
i=1

θi −
∑

(i,j)∈L

θiθj)

where α(G) is the independence number of the graph. It is clear the Harant
formulations are optimizations over a unit hypercube. Other formulations re-
ported in the literature over a hyper sphere, such as [9]. They proved that if θ̄
is a solution to the following optimization problem:

V (k) = min
1

2
θTAGθ + (

N∑
i=1

θi − 1)2

subject to:
N∑
i=1

θ2i ≤
1

k

θ ≥ 0

then V (k) = 0 iff there exists an independent set I in G such that |I| ≥ k.

3 The Formulation

We state here the main result that sets out the main body of our algorithm.
First, we prove the result for a quadratic programming formulation, then we
extend it to a multivariable continuous polynomial programming formulation.
Again as stated in section 2, assume we have a finite graph G(N ,L). N is the
set of N vertices and L is the set of L edges. Associate with each vertex i a
continuous variable θi.

Before we state our formulation, it is good to recall a binary programming
formulation to find the maximum independent set of any graph. It is well known
that the solution of the following binary programming optimization problem
yields the maximum independent set:

max θ1 + θ2 + ...+ θN∑
θi ≤ 1 at each maximal clique

θi ∈ {0, 1}i = 1, 2, ..., N (1)

3.1 Quadratic Formulation

A global solution of the quadratic optimization problem

max Ψ∑
θi ≤ 1 at each maximal clique
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0 ≤ θi ≤ 1 (2)

where Ψ = θ21 + θ22 + ... + θ2N is the independence number of the graph and
the solution vector is a binary vector of 1s and 0s. Moreover, the vertices that
form a maximum independent set, have their θ variable equals 1 and all other
θs equal to 0. In addition, a local maxima of Ψ under the same conditions is
a binary vector such that the θ variable equals to 1 for vertices that form a
maximal independent set and 0 for the rest.

proof:
We will prove that a local maxima is a maximal independent set with a

solution vector that has θi=1 ∀i ∈ the maximal independent set and θi=0 ∀i /∈
the maximal independent set. Let i = 1, 2, ..., p be a maximal independent set.
We need to prove θi = 1 for i = 1, 2, ..., p and θi = 0 for i = p+ 1, ..., N is a local
maxima.

Recall the definition of a local maxima of a multivariable function f(x1, x2, ..., xn).
(x∗1, x

∗
2, ..., x

∗
n) is a local maxima if ∃ε > 0 such that

f(x1, x2, ..., xn) ≤ f(x∗1, x
∗
2, ..., x

∗
n)∀

|x1 − x∗1| ≤ ε, |x2 − x∗2| ≤ ε, ..., |xn − x∗n| ≤ ε

As each 0 ≤ θi ≤ 1, we need to prove that ∃ε such that for 0 < ε ≤ 1 and at

1− ε ≤ θi ≤ 1, i = 1, ..., p

0 ≤ θi ≤ ε, i = p+ 1, ..., N

Ψ is less than that Ψ at θi = 1, i = 1, ..., p and θi = 0, i = p+ 1, ..., N . However,
since {1, ..., p} is a maximal independent set, then each j ∈ {p+ 1, ..., N} must
be connected to at least one of {1, ..., p} and each maximal clique contains one
and only one of {1, ..., p}. Given that∑

θi ≤ 1 at each maximal clique

and taking 0 ≤ θi ≤ 1−∆, i = 1, ..., p, 0 < ∆ ≤ 1, we must have 0 ≤ θi ≤ ∆, i =
p+ 1, ..., N . Now

Ψ = θ21 + ...+ θ2N ≤ (1−∆)2 + ...+ (1−∆)2︸ ︷︷ ︸
p times

+∆2 + ...+∆2︸ ︷︷ ︸
N-p times

Three cases are considered now:

case I: p = N − p

Ψ ≤ (1−∆)2 +∆2 + ...+ (1−∆)2 +∆2︸ ︷︷ ︸
p times
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Since (1−∆)2 +∆2 ≤ 1 because a2 + b2 ≤ (a+ b)2 for positive a and b, we have
Ψ ≤ p. We can take ε any value between 0 and 1 inclusive.

case II: N − p < p

Ψ ≤ (1−∆)2 +∆2 + ...+ (1−∆)2 +∆2︸ ︷︷ ︸
N-p times

+ (1−∆)2 + ...+ (1−∆)2︸ ︷︷ ︸
2p-N times

≤ N−p+2p−N ≤ p

again we can take ε any value between 0 and 1 inclusive.

case III: N − p > p

Ψ ≤ (1−∆)2 +∆2 + ...+ (1−∆)+∆2︸ ︷︷ ︸
p-1 times

+(1 − ∆)2 + (N − 2p + 1)∆2

for ∆ ≤ 2
N−2p+2we have Ψ ≤ p. Taking the limit as ∆→ 0, we have Ψ → p , θi →

1, i = 1, ..., p and θi→ 0, i = p+1, ..., N . Recalling the definition of the limit, for
each ε > 0 ∃δ such that |θi − 1| ≤ ε, i = 1, ..., p and |θi − 0| ≤ ε, i = p+ 1, ..., N
for all |∆− 0| ≤ δ, or 1− ε ≤ θi ≤ 1, i = 1, ..., p and 0 ≤ θi ≤ ε, i = p+ 1, ..., N
for some δ such that 0 ≤ ∆ ≤ δ. Take the ε that corresponds to δ = 2

N−2p+2 , so
accordingly we found the ε.

Clearly the global maxima is a maximum independent set.

3.2 Extension to Multivariable Polynomial Formulation

We show that if
Ψ = θr1 + ...+ θrN

r > 1 the result proved in 3.1 is correct. This surely includes Ψ is a polynomial
with r ≥ 2. Following the same logic of proof in 3.1 case I and II are correct
since xr + (1− x)r ≤ x+ (1− x) ≤ 1 and (1− x)r ≤ 1 for 0 ≤ x ≤ 1 and r > 1.
For case III

Ψ = (1−∆)r +∆r + ...+ (1−∆)r +∆r︸ ︷︷ ︸
p-1 times

+(1−∆)r +Q∆r

Q = N − 2p+ 1

the function f(x) = (1−x)r+Qxr is convex with one minimum at x0 = 1

1+Q
1

r−1
.

This can be shown using calculus. At a local minima

df(x)

dx
= 0

and
d2f(x)

dx2
> 0
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df(x)

dx
= −r(1− x)r−1 + rQxr−1 = 0

solving for x we have x0 = 1

1+Q
1

r−1
. Now

d2f(x0)

dx2
= r(r − 1)(1 − 1

1 +Q
1

r−1

)r−2 + r(r − 1)Q(
1

1 +Q
1

r−1

)r−2 > 0

Fig. 1 shows a sample graph of f(x). It is clear for ∆ < x0 f(x) ≤ 1 and hence
Ψ < p. Now by using the same logic as the proof in 3.1 as ∆ → 0, we can find
the ε.

Fig. 1: graph of f(x), Q = 8 and r = 4. x0 = 0.3333

4 A Second Proof

It has been shown by Jain et al [10] (please refer to that paper to understand
his network flow model under interference) that if the maximal independent sets
are I1, I2, ..., Ik then

fi =
∑
i∈Ij

λj

λ1 + λ2 + ...+ λk = 1

0 ≤ λj ≤ 1, j = 1, 2, ..., k

and
N∑
i=1

fi = independence number
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for a two nodes network. λj is the time allocated to independent set Ij . It can
be easily seen :

Max Ψ∑
θi ≤ 1 at each maximal clique

0 ≤ θi ≤ 1 (3)

given that Ψ is the quadratic or polynomial function as in 3.1 or 3.2 is equiv-
alent to :

Max Ψ∑
θi ≤ 1 at each maximal clique

0 ≤ θi ≤ 1

θi =
∑
i∈Ij

λj 0 ≤ λj ≤ 1, j = 1, 2, ..., k. (4)

However:

λ1 + λ2 + ...+ λk

may or may not equal to 1. Now, we prove

λ1 = 1, λ2 = λ3 = ... = λk = 0

which is equivalent to

θi = 1∀i ∈ I1 and θi = 0∀i /∈ I1

is a local maxima to (3). The same can be proved for I2,I3,...,Ik. Let λ1 ≤ 1−∆.
Now each one of the other independent sets I2, l3, ..., lk either contains a vertex
that is also a member of I1 and in that case λ of that independent set is ≤ ∆
since θi ≤ 1; or the 2nd case is that the independent set contains a vertex that is
not a member of the independent set I1. Hence, this vertex must be connected
to one of of the of the vertices of independent set I1. However, since

∑
θi ≤ 1

at each maximal clique we have λ ≤ ∆ for this independent set. Based on that

Ψ = θ21 + θ22 + ... + θ2N ≤ (1−∆)2 + (1−∆)2 + ...+ (1−∆)2︸ ︷︷ ︸
|I1| times

+Z∆2 (5)

for some integer Z. The proof now proceeds as in 3.1 for the three cases. Similarly,
we can prove it for any power more than 1 in Ψ .
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5 A Third Geometric Proof

We will illustrate the proof by considering a four vertices graph, and it is clear
to see that can be extended to graphs of arbitrary size. Furthermore the proof
suggests an extension of our model to find the maximal weighted independent
sets including the maximum weighted independent set. Now, let’s us state a
connection between the maximum independent sets and the capacity of flow
of two nodes network. Consider a two nodes network, see Fig. 2. Node 1 is
sending data to node 2 over l links(channels) in one unit of time and the capacity
of each link is one data unit per time unit. The links are interfering in such
way that the transmission from node 1 to node 2 is successful only when the
data is transmitted over non-interfering links. Assuming there is a one-to-one
mapping between the links in this two nodes network and the vertices of the
graph G = (N ,L), provided that two links in the network are interfering if
and only if the corresponding vertices of the graph G are connected. It is not
difficult to see the independence number of the graph G is equal to the maximum
successful flow from node 1 to node 2. The maximum flow of the network can
be carried on any set of links that maps to a maximum independent set of the
graph, [10]. We assume θi, i = 1, 2, ...l, l = N , as the flow in data units/time
unit for each link.

Fig. 2: Two nodes networks of l links that conflict according to graph G.
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Consider the graph in Fig. 3, it is clear there are two maximum independent
sets (1, 2, 3) and (1, 2, 4) and one maximal clique (3, 4). Link (vertex) 3 is
interfering(connected) with link (vertex) 4. It is clear the maximum successful
flow from node 1 to node 2 is equal to the independence number 3. Now when
θ1 = θ2 = θ3 = 1 and θ4 = 0 we have maximum flow from node 1 to node 2, see
Fig. 4 (a) ; or it can be attained by splitting the flow of link (vertex) 3 between
links (vertices) 3 and 4 since we have the sum of flows is less than or equal to

Fig. 3: Four vertices graph example.

one in each maximal clique, see Fig. 4 (b). It is clear the total areas of the grey
squares (each square has a side length of 1 unit) is equal to maximum transmitted
data and maximum transmitted data equals to the independence number of the
graph. It can be easily seen for any flows of θs we have θ21+θ22+...θ2l , l = N , is less
than the independence number of the graph or maximum transmitted data and
we attain the maximum when links(vertices) form a maximum independent set
and θs equal 1 for maximum independent links(vertices) set and zero otherwise
since the area of the inner squares (black square which has a side length of θ)
are less than 1, see Fig. 4 (b). It is straightforward to see the logic is valid if we
consider a set of links that forms a maximal independent set and not for only a
maximum independent set.

Now if we assume links capacities are different such as C1, C2 and ...Cl for
links 1, 2, ...l respectively, then it is not difficult to see that the maximum of

C1θ
2
1 + C2θ

2
2 + ...+ Clθ

2
l

is a maximum weighted independent set or a maximal weighted independent set
such that the capacities are links weights and depending on if it is a global or local
maximum respectively. This should be the objective function in our optimization
formulation. As an example if the weights of our four vertices graph in Fig. 3
are 1,2, 3, 4 for vertices 1, 2, 3, 4 respectively, then the maximum of data sent
(which is equivalent to maximum weighted independent set) will be 1+2+4=7
or the maximum weighted independent set will be links (vertices) 1,2 and 4.
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Fig. 4: Schedule of flows for a network that has the four vertices graph as a conflict
graph (a) an independent set carries all the flow (b)link 3 flow is splitted over 2 links,
also inner square area is less 1.

6 Examples and Extensions

As an example, we applied our algorithm to Hoffman Singleton graph [11]. After
more than 7 hours of computer crunching, WolfRam Mathematica 11.01 FindIn-
dependentVertexSet function didn’t converge to a maximum independent set on
MacBook Pro, 2.5 GHz Intel Core i5, 8 GB memory. We used Matlab R2017a to
code our algorithm. The first phase is finding the maximal cliques of the graph.
To that end we used a code from matlab File Exchange for Bron-Kerbosch al-
gorithm to list the maximal cliques [12]. In spite of that this algorithm is not
the best known algorithm for large sparse graphs, but it did serve our purpose.
There are almost polynomial algorithms to list maximal cliques for sparse graphs
reported in literature such as [13]. The matlab code is shown below:

func t i on [ f i n a l x , f i n a l f v a l , e x i t f l a g , output ] = conversionA
( Adjacency )

% convert the Adjacency matrix in to the opt imiza t i on
parameters o f

% fmincon
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% LB<=X <=UB
t0=c lock ;
A= [ ] ;
Max Ind Set = [ ] ;
n o v e r t i c e s=s i z e ( Adjacency , 1 ) ;
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
%c a l c u l a t i n g A and B, LB and UB
t1=c lock ;
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P=maximalCliques ( Adjacency , ’ v2 ’ ) ;
t2=c lo ck ;
e1=etime ( t2 , t1 ) ;
d i sp ( e1 /60) ;
c c o n s t r a i n t s=s i z e (P, 2) ; %number o f c l i q u e c o n s t r a i n t s
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
%c a l c u l a t i n g LB
LB=ze ro s ( nove r t i c e s , 1 ) ;
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
%c a l c u l a t i n g UB
UB=ones ( nove r t i c e s , 1 ) ;
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
%c a l c u l a t i n g B
B=ones ( c c o n s t r a i n t s , 1 ) ;
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
%theta 1+the ta 2+ . . . + t h e t a r i <=1
A=P ’ ;
t3=c lo ck ;
x0=rand ( nove r t i c e s , 1 ) ;
ptmatrix=rand (100 , n o v e r t i c e s ) ;
t p o i n t s = CustomStartPointSet ( ptmatrix ) ;
opt i ons = opt imopt ions ( ’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

Spec i fyObject iveGrad ient ’ , true , ’ d i sp lay ’ , ’ o f f ’ ) ;
problem=createOptimProblem ( ’ fmincon ’ , ’ ob j e c t i v e ’ ,

@throughput , ’ x0 ’ , x0 , ’ Aineq ’ ,A, ’ bineq ’ ,B, ’ opt ions ’ ,
opt ions , ’ lb ’ ,LB, ’ ub ’ ,UB) ;

ms = Mult iStar t ( ’ UsePara l l e l ’ , true , ’ XTolerance ’ , 1 ) ;
[ x , f va l , e x i t f l a g , output ]= run (ms , problem , t p o i n t s ) ;
f i n a l f v a l=−f v a l ;
f i n a l x=x ;
t4=c lo ck ;
e1=etime ( t2 , t1 ) ;
e2=etime ( t4 , t3 ) ;
e3=etime ( t4 , t0 ) ;
f p r i n t f ( ’%s ’ , ’ Born−Kerbosch Algorithm time in minutes ’ ) ;
d i sp ( e1 /60) ;
f p r i n t f ( ’%s ’ , ’ Quadratic So lve r time in minutes ’ ) ;
d i sp ( e2 /60) ;
f p r i n t f ( ’%s ’ , ’ t o t a l time in minutes ’ ) ;
d i sp ( e3 /60) ;
f p r i n t f ( ’%s ’ , ’ Independence number = ’) ;
d i sp ( f i n a l f v a l ) ;
f p r i n t f ( ’%s ’ , ’A maximum independent s e t = ’) ;
f o r i =1: n o v e r t i c e s

i f f i n a l x ( i )>=0.9
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f p r i n t f ( ’%d , ’ , i ) ;
end

end
f p r i n t f ( ’\n%s \n ’ , ’∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ) ;
end

Object ive func t i on code f o r 208 v e r t i c e s graph .
func t i on [ f , gf , h f ] = throughput ( x )
f=−ones (1 ,208) ∗x . ˆ 2 ;
i f nargout > 1 % grad i en t r equ i r ed

g f=−2∗x ;
end
i f nargout > 2 % Hess ian r equ i r ed

hf =−2∗eye (208) ;
end
end

The code is three functions: (1) throughput function which is the objective
function with its gradient, (2) the maximalCliques function which is not shown
here downloaded from matlab code sharing community and (3) conversionA
which prepares the the optimization problem parameters to be in the format
for fmincon function and solves the problem using 100 uniformly distributed
random seeds. By using matlab Parallel Add-on, a maximum independent set
was yielded in 0.1451 minutes where the main time is due to fmincon of 0.1326
minutes and 0.0124 minutes to list maximal cliques.

Another important problem is finding an independent set of a certain size.
This can be achieved by adding the constraint

θ1 + θ2 + ...+ θN = M (6)

where M is the required independent set size.

7 Results Obtained form DIMACS Benchmarks

We see in table 1 and table 2 some of DIMACs maximum cliques benchmarks
[14]. KBA stands for Bron-Kerbosch algorithm and SQP stands for sequential
quadratic matlab algorithm. To find the maximum clique in these graphs, we
found the maximum independent set in the complement graph. As can be seen
our algorithm is efficient especially for sparse graphs that have short time to list
their maximal cliques. Sequential quadratic programming is more accurate than
interior-point and needs less runs. Since fmincon sometimes halts while trying to
find a global maximum, we used in some graphs the equality constraint to find
an independent set of that size which happens to be a maximum independent
set for the graphs listed such as Keller4. In the second table for Keller4 graph
the parallel processing version of fmincon halts responding in spite of finding the
independence number in the first runs; for this we used a non-parallel fmincon
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and the result shown in the table is for one such run. Fig. 5 shows the average
running time when we use different powers of our polynomial formulation for 5
runs, each with 100 seeds for C125.9 graph [14], that has clique number equals
to 34. It is clear increasing the polynomial power hasn’t reduced execution time
and as can be seen from Fig. 6 the accuracy is even less with more runs required
to coverage to a global optima. We used a 500 seeds for a polynomial of degree
4 and we found independent sets of sizes 34 and 33, and with 1000 seeds for a
polynomial of degree 10 we found an independent set of size 31. Now we come to
some of the graphs where our algorithm performs better than cliquer [15]. One
such graph is C250.9.clq [14] that has a clique number of 44. The maximal cliques
listing time, quadratic programming algorithm time and total time were 0.1309,
125.6358 minutes (2.09393 hours), 125.7669 minutes (2.096115 hours) respec-
tively by our algorithm to get a clique number of 44 while the maximum clique
obtained by cliquer [15] is 39 after more than 7 hours of running. Indeed cliquer
halted at 184/250 (max 39) 26202.11 (3330.10 s /round) and stopped respond-
ing. Another graph is P Gamma U34 On Nonisotropic Points [11], our quadratic
programming algorithm yielded the independence number (clique number in the
complement graph) 44 in 3.9597 minutes with 0.0182 minutes maximal cliques
listing time, 3.9415 minutes for the quadratic solver fmincon; while cliquer took
more than 7 hours without converging to the right independence number. Here
is the last output of cliquer 146/208 (max 38) 25465.65 s (8904.73 s/round).

Table 1: DIMACS results using interior-point algorithm for fmincon.

Graph KBA time No. of iterations Interior-Point time ω

johnson8-2-4 0.0052 1 0.0075 4

MANN-a9 0.0013 5 0.0084 16

hamming6-2 0.0026 1 0.0072 32

hamming6-4 0.4790 10 23.2787 4

johson8-4-4 0.0937 20 0.1043 14

johnson16-2-4 0.0123 10 0.0827 8

C125.9 0.0097 100 0.6695 34

keller4 a 2.2866 10 12.8564 11
awith equality constraint, sum of θs=11

8 Conclusion

We proposed a quadratic optimization formulation to find maximal independent
sets of any graph. We extended that to a polynomial optimization formulation.
We need to list first the maximal cliques of the graph and then we solve a non-
linear optimization problem. Our formulation is efficient when tested on some of
the DIMAC maximum clique benchmarks and proved to be more efficient than a
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Table 2: DIMACS results using sequential quadratic programming algorithm for fmin-
con.

Graph KBA time No. of iterations SQP time ω

johnson8-2-4 0.0035 1 0.0095 4

MANN-a9 0.0020 1 0.0062 16

hamming6-2 0.0030 1 0.0086 32

hamming6-4 a 0.4933 1 0.8052 4

johson8-4-4 0.0103 20 0.0206 14

johnson16-2-4 0.0130 10 0.0251 8

C125.9 0.0099 50 0.1152 34

keller4b 1.8339 1 2.8839 11
awith equality constraint, sum of θs=4
b run function stops responding, we used fmincon without parallel processing

Fig. 5: Average time of 5 runs, each with 100 seeds for different powers of the objective.
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Fig. 6: Average Maximum Independent Set found of 5 runs, each with 100 seeds for
different powers of the objective.

popular maximum clique algorithm such as cliquer for some graphs. However due
to the time required to solve the quadratic or polynomial optimization problem,
our algorithm works better when the listing time of maximal cliques of the
graph is short, i.e. for sparse graphs. We can even reduce the time by coding
an algorithm such as that in [13] to reduce maximal cliques listing time. This is
to be tested in future for large sparse graph. The model can be extended easily
to find an independent set of a certain size and to find the maximal weighted
independent sets in weighted graphs.
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