200 research outputs found

    Mechanical homeostasis regulating adipose tissue volume

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume.</p> <p>Presentation of the hypothesis</p> <p>Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region.</p> <p>Testing of the hypothesis</p> <p>Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed.</p> <p>Implications of the hypothesis</p> <p>The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.</p

    Exploring the context of sedentary behaviour in older adults (what, where, why, when and with whom)

    Get PDF
    BACKGROUND: Older adults are the most sedentary segment of the population. Little information is available about the context of sedentary behaviour to inform guidelines and intervention. There is a dearth of information about when, where to intervene and which specific behaviours intervention should target. The aim of this exploratory study was to obtain objective information about what older adults do when sedentary, where and when they are sedentary and in what social context. METHODS: The study was a cross-sectional data collection. Older adults (Mean age = 73.25, SD ± 5.48, median = 72, IQR = 11) volunteers wore activPAL monitors and a Vicon Revue timelapse camera between 1 and 7 days. Periods of sedentary behaviour were identified using the activPAL and the context extracted from the pictures taken during these periods. Analysis of context was conducted using the Sedentary Behaviour International Taxonomy classification system. RESULTS: In total, 52 days from 36 participants were available for analysis. Participants spent 70.1 % of sedentary time at home, 56.9 % of sedentary time on their own and 46.8 % occurred in the afternoon. Seated social activities were infrequent (6.9 % of sedentary bouts) but prolonged (18 % of sedentary time). Participants appeared to frequently have vacant sitting time (41 % of non-screen sedentary time) and screen sitting was prevalent (36 % of total sedentary time). CONCLUSIONS: This study provides valuable information to inform future interventions to reduce sedentary behaviour. Interventions should consider targeting the home environment and focus on the afternoon sitting time, though this needs confirmation in a larger study. Tackling social isolation may also be a target to reduce sedentary time

    Systematic literature review of determinants of sedentary behaviour in older adults:a DEDIPAC study

    Get PDF
    BACKGROUND: Older adults are the most sedentary segment of society and high sedentary time is associated with poor health and wellbeing outcomes in this population. Identifying determinants of sedentary behaviour is a necessary step to develop interventions to reduce sedentary time. METHODS: A systematic literature review was conducted to identify factors associated with sedentary behaviour in older adults. Pubmed, Embase, CINAHL, PsycINFO and Web of Science were searched for articles published between 2000 and May 2014. The search strategy was based on four key elements: (a) sedentary behaviour and its synonyms; (b) determinants and its synonyms (e.g. correlates, factors); (c) types of sedentary behaviour (e.g. TV viewing, sitting, gaming) and (d) types of determinants (e.g. environmental, behavioural). Articles were included in the review if specific information about sedentary behaviour in older adults was reported. Studies on samples identified by disease were excluded. Study quality was rated by means of QUALSYST. The full review protocol is available from PROSPERO (PROSPERO 2014: CRD42014009823). The analysis was guided by the socio-ecological model framework. RESULTS: Twenty-two original studies were identified out of 4472 returned by the systematic search. These included 19 cross-sectional, 2 longitudinal and 1 qualitative studies, all published after 2011. Half of the studies were European. The study quality was generally high with a median of 82 % (IQR 69-96 %) using Qualsyst tool. Personal factors were the most frequently investigated with consistent positive association for age, negative for retirement, obesity and health status. Only four studies considered environmental determinants suggesting possible association with mode of transport, type of housing, cultural opportunities and neighbourhood safety and availability of places to rest. Only two studies investigated mediating factors. Very limited information was available on contexts and sub-domains of sedentary behaviours. CONCLUSION: Few studies have investigated determinants of sedentary behaviour in older adults and these have to date mostly focussed on personal factors, and qualitative studies were mostly lacking. More longitudinal studies are needed as well as inclusion of a broader range of personal and contextual potential determinants towards a systems-based approach, and future studies should be more informed by qualitative work

    Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA

    Get PDF
    Background Patients with hip osteoarthritis (OA) have muscular weakness, impaired balance, and limp. Deficits in the different limb muscles and their recovery courses are largely unknown, however. We hypothesized that there is persisting muscular weakness in lower limb muscles and an impaired balance and gait 2 years after THA

    Effects of Blood Flow Restricted Low-Intensity Concentric or Eccentric Training on Muscle Size and Strength

    Get PDF
    The authors thank the students who participated in this study. We also thank Toshiaki Nakajima, MD, PhD, Ken Masamune, PhD, Hiroki Kamiuchi, The University of Tokyo, for helpful discussion and technical support.Conceived and designed the experiments: TY TA. Performed the experiments: TY. Analyzed the data: TY JPL TA. Wrote the paper: TY JPL RST TA.We investigated the acute and chronic effects of low-intensity concentric or eccentric resistance training with blood flow restriction (BFR) on muscle size and strength. Ten young men performed 30% of concentric one repetition maximal dumbbell curl exercise (four sets, total 75 reps) 3 days/week for 6 weeks. One arm was randomly chosen for concentric BFR (CON-BFR) exercise only and the other arm performed eccentric BFR (ECC-BFR) exercise only at the same exercise load. During the exercise session, iEMG for biceps brachii muscles increased progressively during CON-BFR, which was greater (p<0.05) than that of the ECC-BFR. Immediately after the exercise, muscle thickness (MTH) of the elbow flexors acutely increased (p<0.01) with both CON-BFR and ECC-BFR, but was greater with CON-BFR (11.7%) (p<0.01) than ECC-BFR (3.9%) at 10-cm above the elbow joint. Following 6-weeks of training, MRI-measured muscle cross-sectional area (CSA) at 10-cm position and mid-upper arm (12.0% and 10.6%, respectively) as well as muscle volume (12.5%) of the elbow flexors were increased (p<0.01) with CON-BFR. Increases in muscle CSA and volume were lower in ECC-BFR (5.1%, 0.8% and 2.9%, respectively) than in the CON-BFR and only muscle CSA at 10-cm position increased significantly (p<0.05) after the training. Maximal voluntary isometric strength of elbow flexors was increased (p<0.05) in CON-BFR (8.6%), but not in ECC (3.8%). These results suggest that CON-BFR training leads to pronounced acute changes in muscle size, an index of muscle cell swelling, the response to which may be an important factor for promoting muscle hypertrophy with BFR resistance training.Yeshttp://www.plosone.org/static/editorial#pee

    Changes in Cognition and Mortality in Relation to Exercise in Late Life: A Population Based Study

    Get PDF
    BACKGROUND: On average, cognition declines with age but this average hides considerable variability, including the chance of improvement. Here, we investigate how exercise is associated with cognitive change and mortality in older people and, particularly, whether exercise might paradoxically increase the risk of dementia by allowing people to live longer. METHODS AND PRINCIPAL FINDINGS: In the Canadian Study of Health and Aging (CSHA), of 8403 people who had baseline cognition measured and exercise reported at CSHA-1, 2219 had died and 5376 were re-examined at CSHA-2. We used a parametric Markov chain model to estimate the probabilities of cognitive improvement, decline, and death, adjusted for age and education, from any cognitive state as measured by the Modified Mini-Mental State Examination. High exercisers (at least three times per week, at least as intense as walking, n = 3264) had more frequent stable or improved cognition (42.3%, 95% confidence interval: 40.6-44.0) over 5 years than did low/no exercisers (all other exercisers and non exercisers, n = 4331) (27.8% (95% CI 26.4-29.2)). The difference widened as baseline cognition worsened. The proportion whose cognition declined was higher amongst the high exercisers but was more similar between exercise groups (39.4% (95% CI 37.7-41.1) for high exercisers versus 34.8% (95% CI 33.4-36.2) otherwise). People who did not exercise were also more likely to die (37.5% (95% CI 36.0-39.0) versus 18.3% (95% CI 16.9-19.7)). Even so, exercise conferred its greatest mortality benefit to people with the highest baseline cognition. CONCLUSIONS: Exercise is strongly associated with improving cognition. As the majority of mortality benefit of exercise is at the highest level of cognition, and declines as cognition declines, the net effect of exercise should be to improve cognition at the population level, even with more people living longer
    corecore