11,118 research outputs found

    Bioenergetic modeling of the blue crab (Callinectes sapidus) using the fish bioenergetics (3.0) computer program

    Get PDF
    To understand better the ecology and growth dynamics of the blue crab (Callinectes sapidus). we developed a bioenergetic model based upon the Fish Bioenergetics 3.0 computer program. We summarized and analyzed existing data from published studies on the ecology and physiology of both blue crab and closely related species to parameterize the model. The respiration and excretion components were estimated directly from published studies. Parts of the consumption component were estimated indirectly. The resulting model was evaluated for applicability against known growth trajectories from field and laboratory studies. The model predicted observed growth and consumption to a first approximation. Inspection of model results suggest that improvements in our knowledge of temperature- and size-dependant consumption are required before a more predictive model can be developed. However, at this point the model is sufficiently accurate to explore some fishery-related questions

    Evidence-Based Perioperative Medicine comes of age: the Perioperative Quality Initiative (POQI): The 1st Consensus Conference of the Perioperative Quality Initiative (POQI).

    Get PDF
    The 1st POQI Consensus Conference occurred in Durham, NC, on March 4-5, 2016, and was supported by the American Society of Enhanced Recovery (ASER) and Evidence-Based Perioperative Medicine (EBPOM). The conference focused on enhanced recovery for colorectal surgery and discussed four topics-perioperative analgesia, perioperative fluid management, preventing nosocomial infection, and measurement and quality in enhanced recovery pathways

    Simulating bottom-up effects on predator productivity and consequences for the rebuilding timeline of a depleted population

    Get PDF
    Bottom-up control within ecosystems is characterized, in part, by predator populations exhibiting growth and recruitment changes in response to variability in prey density or production. Annual prey availability can vary more than 10-fold in marine ecosystems, with prey experiencing a dramatic increase or pulse in production within some years. To assess the bottom-up effects of such pulses on predator growth, production, and fisheries management, we developed an age-specific, predator-prey simulation model (parameterized for summer flounder, Paralichthys dentatus) based on simple hypothesized mechanisms for consumption, growth, and population dynamics. Pulses in each of the three modeled prey groups (small crustaceans, forage fish, larger fish prey) generated different magnitudes of change in predator weight-at-age (w), spawning stock biomass (S), fishery yield (Y), and recruitment (R), due to ontogenetic differences in growth potential and dietary composition across predator age classes. Increases in productivity of small forage fishes generated the greatest gains in predator w, S, Y, and R, relative to pulses of the other prey groups. Median increases in R following a prey pulse were minimal (\u3c 4%) except under high fishing rates that stimulated a stronger compensatory response in the population (8-11% increase in R), demonstrating the interactive role of top-down and bottom-up effects on predator productivity. Seasonal migration patterns determined the degree of spatiotemporal overlap of predators with the spatially constrained pulses in prey production. Prey pulses reduced the median time required for depleted populations to be rebuilt by 0-5% following declines in fishing pressure. Reductions in time to recovery were highly variable due to recruitment stochasticity, but stock recovery was more sensitive to the severity of harvest control measures than to availability of the non-limiting prey. Understanding the relative magnitudes of such bottom-up processes, particularly in the presence of varied fishing pressure can aid in developing ecosystem approaches to fisheries management that account for such ecological interactions more explicitly. (C) 2015 Elsevier B.V. All rights reserved

    Spatial and temporal dynamics of Atlantic menhaden (Brevoortia tyrannus) recruitment in the Northwest Atlantic Ocean

    Get PDF
    Atlantic menhaden, Brevoortia tyrannus, is an abundant, schooling pelagic fish that is widely distributed in the coastal Northwest Atlantic. It supports the largest single-species fishery by volume on the east coast of the United States. However, relatively little is known about factors that control recruitment, and its stock- recruitment relationship is poorly defined. Atlantic menhaden is managed as a single unit stock, but fisheries and environmental variables likely act regionally on recruitments. To better understand spatial and temporal variability in recruitment, fishery-independent time-series (1959-2013) of young-of-year (YOY) abundance indices from the Mid-Atlantic to Southern New England (SNE) were analysed using dynamic factor analysis and generalized additive models. Recruitment time-series demonstrated low-frequency variability and the analyses identified two broad geographical groupings, the Chesapeake Bay (CB) and SNE. Each of these two regions exhibited changes in YOY abundance and different periods of relatively high YOY abundance that were inversely related to each other; CB indices were highest from ca. 1971 to 1991, whereas SNE indices were high from ca. 1995 to 2005. Wetested for effects of climatic, environmental, biological, and fishing-related variables that have been documented or hypothesized to influence stock productivity. Abroad-scale indicator of climate, the Atlantic Multidecadal Oscillation, was the best single predictor of coast-wide recruitment patterns, and had opposing effects on the CB and SNE regions. Underlying mechanisms of spatial and interannual variability in recruitment likely derive from interactions among climatology, larval transport, adult menhaden distribution, and habitat suitability. The identified regional patterns and climatic effects have implications for the stock assessment of Atlantic menhaden, particularly given the geographically constrained nature of the existing fishery and the climatic oscillations characteristic of the coastal ocean

    A Transparent Display with Per-Pixel Color and Opacity Control

    Get PDF
    International audienceWe propose a new display system that composites matted foreground animated graphics and video, with per-pixel controllable emitted color and transparency, over real-world dynamic objects seen through a transparent display. Multiple users can participate simultaneously without any glasses, trackers, or additional devices. The current prototype is deployed as a desktop-monitor-sized transparent display box assembled from commodity hardware components with the addition of a high-frame-rate controllable diffuser

    Energy recovery in individuals with knee osteoarthritis.

    Get PDF
    OBJECTIVE: Pathological gaits have been shown to limit transfer between potential (PE) and kinetic (KE) energy during walking, which can increase locomotor costs. The purpose of this study was to examine whether energy exchange would be limited in people with knee osteoarthritis (OA). METHODS: Ground reaction forces during walking were collected from 93 subjects with symptomatic knee OA (self-selected and fast speeds) and 13 healthy controls (self-selected speed) and used to calculate their center of mass (COM) movements, PE and KE relationships, and energy recovery during a stride. Correlations and linear regressions examined the impact of energy fluctuation phase and amplitude, walking velocity, body mass, self-reported pain, and radiographic severity on recovery. Paired t-tests were run to compare energy recovery between cohorts. RESULTS: Symptomatic knee OA subjects displayed lower energetic recovery during self-selected walking speeds than healthy controls (P = 0.0018). PE and KE phase relationships explained the majority (66%) of variance in recovery. Recovery had a complex relationship with velocity and its change across speeds was significantly influenced by the self-selected walking speed of each subject. Neither radiographic OA scores nor subject self-reported measures demonstrated any relationship with energy recovery. CONCLUSIONS: Knee OA reduces effective exchange of PE and KE, potentially increasing the muscular work required to control movements of the COM. Gait retraining may return subjects to more normal patterns of energy exchange and allow them to reduce fatigue

    The Effects of Previous Error and Success in Alzheimer’s Disease and Mild Cognitive Impairment

    Get PDF
    This work investigated in Alzheimer’s disease dementia (AD), whether the probability of making an error on a task (or a correct response) was influenced by the outcome of the previous trials. We used the antisaccade task (AST) as a model task given the emerging consensus that it provides a promising sensitive and early biological test of cognitive impairment in AD. It can be employed equally well in healthy young and old adults, and in clinical populations. This study examined eye-movements in a sample of 202 participants (42 with dementia due to AD; 65 with mild cognitive impairment (MCI); 95 control participants). The findings revealed an overall increase in the frequency of AST errors in AD and MCI compared to the control group, as predicted. The errors on the current trial increased in proportion to the number of consecutive errors on the previous trials. Interestingly, the probability of errors was reduced on the trials that followed a previously corrected error, compared to the trials where the error remained uncorrected, revealing a level of adaptive control in participants with MCI or AD dementia. There was an earlier peak in the AST distribution of the saccadic reaction times for the inhibitory errors in comparison to the correct saccades. These findings revealed that the inhibitory errors of the past have a negative effect on the future performance of healthy adults as well as people with a neurodegenerative cognitive impairment

    The homotopy type of the loops on (n−1)(n-1)-connected (2n+1)(2n+1)-manifolds

    Full text link
    For n≥2n\geq 2 we compute the homotopy groups of (n−1)(n-1)-connected closed manifolds of dimension (2n+1)(2n+1). Away from the finite set of primes dividing the order of the torsion subgroup in homology, the pp-local homotopy groups of MM are determined by the rank of the free Abelian part of the homology. Moreover, we show that these pp-local homotopy groups can be expressed as a direct sum of pp-local homotopy groups of spheres. The integral homotopy type of the loop space is also computed and shown to depend only on the rank of the free Abelian part and the torsion subgroup.Comment: Trends in Algebraic Topology and Related Topics, Trends Math., Birkhauser/Springer, 2018. arXiv admin note: text overlap with arXiv:1510.0519

    American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on measurement to maintain and improve quality of enhanced recovery pathways for elective colorectal surgery.

    Get PDF
    BACKGROUND: This article sets out a framework for measurement of quality of care relevant to enhanced recovery pathways (ERPs) in elective colorectal surgery. The proposed framework is based on established measurement systems and/or theories, and provides an overview of the different approaches for improving clinical monitoring, and enhancing quality improvement or research in varied settings with different levels of available resources. METHODS: Using a structure-process-outcome framework, we make recommendations for three hierarchical tiers of data collection. DISCUSSION: Core, Quality Improvement, and Best Practice datasets are proposed. The suggested datasets incorporate patient data to describe case-mix, process measures to describe delivery of enhanced recovery and clinical outcomes. The fundamental importance of routine collection of data for the initiation, maintenance, and enhancement of enhanced recovery pathways is emphasized
    • …
    corecore