29 research outputs found

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Single amino acid radiocarbon dating of Upper Paleolithic modern humans.

    No full text
    Archaeological bones are usually dated by radiocarbon measurement of extracted collagen. However, low collagen content, contamination from the burial environment, or museum conservation work, such as addition of glues, preservatives, and fumigants to "protect" archaeological materials, have previously led to inaccurate dates. These inaccuracies in turn frustrate the development of archaeological chronologies and, in the Paleolithic, blur the dating of such key events as the dispersal of anatomically modern humans. Here we describe a method to date hydroxyproline found in collagen (~10% of collagen carbon) as a bone-specific biomarker that removes impurities, thereby improving dating accuracy and confidence. This method is applied to two important sites in Russia and allows us to report the earliest direct ages for the presence of anatomically modern humans on the Russian Plain. These dates contribute considerably to our understanding of the emergence of the Mid-Upper Paleolithic and the complex suite of burial behaviors that begin to appear during this period

    Radiocarbon-based chronology for dynastic Egypt.

    No full text
    The historical chronologies for dynastic Egypt are based on reign lengths inferred from written and archaeological evidence. These floating chronologies are linked to the absolute calendar by a few ancient astronomical observations, which remain a source of debate. We used 211 radiocarbon measurements made on samples from short-lived plants, together with a Bayesian model incorporating historical information on reign lengths, to produce a chronology for dynastic Egypt. A small offset (19 radiocarbon years older) in radiocarbon levels in the Nile Valley is probably a growing-season effect. Our radiocarbon data indicate that the New Kingdom started between 1570 and 1544 B.C.E., and the reign of Djoser in the Old Kingdom started between 2691 and 2625 B.C.E.; both cases are earlier than some previous historical estimates

    Circulant preconditioners for analytic functions of Toeplitz matrices

    No full text
    Circulant preconditioning for symmetric Toeplitz systems has been well developed over the past few decades. For a large class of such systems, descriptive bounds on convergence for the conjugate gradient method can be obtained. For (real) nonsymmetric Toeplitz systems, much work had been focused on normalising the original systems until Pestana and Wathen (Siam J. Matrix Anal. Appl. 36(1):273–288 2015) recently showed that theoretic guarantees on convergence for the minimal residual method can be established via the simple use of reordering. The authors further proved that a suitable absolute value circulant preconditioner can be used to ensure rapid convergence. In this paper, we show that the related ideas can also be applied to the systems defined by analytic functions of (real) nonsymmetric Toeplitz matrices. For the systems defined by analytic functions of complex Toeplitz matrices, we also show that certain circulant preconditioners are effective. Numerical examples with the conjugate gradient method and the minimal residual method are given to support our theoretical results.</p
    corecore