1,410 research outputs found

    Unified Analysis of Spin Isospin Responses of Nuclei

    Full text link
    We investigated the Gamow-Teller (GT) strength distribution, especially the quenching with respect to the GT sum rule, and the enhancement of the pionic responses in the quasielasic scattering region, in the same theoretical framework. That is the continuum random phase approximation with the pi+rho+g' model interaction, incorporated with distorted wave impulse approximation and two-step calculations. From this analysis we searched the Landau-Migdal parameters, g'NN and g'ND, through the comparison with the experimental data of the GT strength distribution obtained at 300 MeV and the spin-longitudinal (pionic) cross sections IDq of (p,n) at 350 and 500 MeV. This comprehensive and sophisticated study gave a common set of g'NN=0.6-0.7 and g'ND=0.2-0.4, for both low and high momentum transfers.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Performance of the neutron polarimeter NPOL3 for high resolution measurements

    Full text link
    We describe the neutron polarimeter NPOL3 for the measurement of polarization transfer observables DijD_{ij} with a typical high resolution of \sim300 keV at TnT_n \simeq 200 MeV. The NPOL3 system consists of three planes of neutron detectors. The first two planes for neutron polarization analysis are made of 20 sets of one-dimensional position-sensitive plastic scintillation counters with a size of 100 cm ×\times 10 cm ×\times 5 cm, and they cover the area of 100 ×\times 100 cm2\mathrm{cm}^2. The last plane for detecting doubly scattered neutrons or recoiled protons is made of the two-dimensional position-sensitive liquid scintillation counter with a size of 100 cm ×\times 100 cm ×\times 10 cm. The effective analyzing powers Ay;effA_{y;\mathrm{eff}} and double scattering efficiencies ϵD.S.\epsilon_{\mathrm{D.S.}} were measured by using the three kinds of polarized neutrons from the 2H(p,n)pp{}^{2}{\rm H}(\vec{p},\vec{n})pp, 6Li(p,n)6Be(g.s.){}^{6}{\rm Li}(\vec{p},\vec{n}){}^{6}{\rm Be}(\mathrm{g.s.}), and 12C(p,n)12N(g.s.){}^{12}{\rm C}(\vec{p},\vec{n}){}^{12}{\rm N}(\mathrm{g.s.}) reactions at TpT_p = 198 MeV. The performance of NPOL3 defined as ϵD.S.(Ay;eff)2\epsilon_{\mathrm{D.S.}}(A_{y;\mathrm{eff}})^2 are similar to that of the Indiana Neutron POLarimeter (INPOL) by taking into account for the counter configuration difference between these two neutron polarimeters.Comment: 28 pages, 18 figures, submitted to Nucl. Instrum. Methods Phys. Res.

    Complete Set of Polarization Transfer Observables for the 12C(p,n)^{12}{\rm C}(p,n) Reaction at 296 MeV and 0^{\circ}

    Full text link
    A complete set of polarization transfer observables has been measured for the 12C(p,n)^{12}{\rm C}(p,n) reaction at Tp=296MeVT_p=296 {\rm MeV} and θlab=0\theta_{\rm lab}=0^{\circ}. The total spin transfer Σ(0)\Sigma(0^{\circ}) and the observable f1f_1 deduced from the measured polarization transfer observables indicate that the spin--dipole resonance at Ex7MeVE_x \simeq 7 {\rm MeV} has greater 22^- strength than 11^- strength, which is consistent with recent experimental and theoretical studies. The results also indicate a predominance of the spin-flip and unnatural-parity transition strength in the continuum. The exchange tensor interaction at a large momentum transfer of Q3.6fm1Q \simeq 3.6 {\rm fm}^{-1} is discussed.Comment: 4 pages, 4 figure

    Measurement of Single and Double Spin-Flip Probabilities in Inelastic Deuteron Scattering on 12C at 270 MeV

    Get PDF
    The deuteron single and double spin-flip probabilities, S1 and S2, have been measured for the 12C(pol{d},pol{d}') reaction at Ed = 270 MeV for an excitation energy range between 4 and 24 MeV and a scattering angular range between Theta_lab = 2.5 and 7.5 deg. The extracted S1 exhibits characteristic values depending on the structure of the excited state. The S2 is close to zero over the measured excitation energy range. The SFP angular distribution data for the 2+ (4.44 MeV) and 1+ (12.71 MeV) states are well described by the microscopic DWIA calculations

    Study of nuclear correlation effects via 12C(p,n)12N(g.s.,1+) at 296 MeV

    Get PDF
    We report measurements of the cross section and a complete set of polarization observables for the Gamow--Teller 12C(p,n)12N(g.s.,1+){}^{12}{\rm C}(\vec{p},\vec{n}){}^{12}{\rm N}({\rm g.s.},1^+) reaction at a bombarding energy of 296 MeV. The data are compared with distorted wave impulse approximation calculations employing transition form factors normalized to reproduce the observed beta-decay ftft value. The cross section is significantly under-predicted by the calculations at momentum transfers qq \gtrsim 0.5 fm1{\rm fm^{-1}}. The discrepancy is partly resolved by considering the non-locality of the nuclear mean field. However, the calculations still under-predict the cross section at large momentum transfers of qq \simeq 1.6 fm1{\rm fm^{-1}}. We also performed calculations employing random phase approximation response functions and found that the observed enhancement can be attributed in part to pionic correlations in nuclei.Comment: 5 figures, submitted to Phys. Lett.

    Complete set of polarization transfer coefficients for the 3He(p,n){}^{3}{\rm He}(p,n) reaction at 346 MeV and 0 degrees

    Full text link
    We report measurements of the cross-section and a complete set of polarization transfer coefficients for the 3He(p,n){}^{3}{\rm He}(p,n) reaction at a bombarding energy TpT_p = 346 MeV and a reaction angle θlab\theta_{\rm lab} = 00^{\circ}. The data are compared with the corresponding free nucleon-nucleon values on the basis of the predominance of quasi-elastic scattering processes. Significant discrepancies have been observed in the polarization transfer DLL(0)D_{LL}(0^{\circ}), which are presumably the result of the three-proton TT = 3/2 resonance. The spin--parity of the resonance is estimated to be 1/21/2^-, and the distribution is consistent with previous results obtained for the same reaction at TpT_p = 48.8 MeV.Comment: 4 figures, Accepted for publication in Physical Review

    Two-step contribution to the spin-longitudinal and spin-transverse cross sections of the quasielastic (p,n) reactions

    Full text link
    The two-step contribution to the spin-longitudinal and the spin-transverse cross sections of ^{12}C,^{40}Ca(p,n) reactions at 494 MeV and 346 MeV is calculated. We use a plane-wave approximation and evaluate the relative contributions from the one-step and the two-step processes. We found that the ratios of the two-step to the one-step processes are larger in the spin-transverse cross sections than in the spin-longitudinal ones. Combining these results with the distorted-wave impulse approximation (DWIA) results we obtained considerable two-step contributions to the spin-longitudinal and the spin-transverse cross sections. The two-step processes are important in accounting for the underestimation of the DWIA results for the spin-longitudinal and the spin-transverse cross sections.Comment: LaTeX 11 pages, 10 figure

    Determination of the Gamow-Teller Quenching Factor from Charge Exchange Reactions on 90Zr

    Full text link
    Double differential cross sections between 0-12 degrees were measured for the 90Zr(n,p) reaction at 293 MeV over a wide excitation energy range of 0-70 MeV. A multipole decomposition technique was applied to the present data as well as the previously obtained 90Zr(p,n) data to extract the Gamow-Teller (GT) component from the continuum. The GT quenching factor Q was derived by using the obtained total GT strengths. The result is Q=0.88+/-0.06 not including an overall normalization uncertainty in the GT unit cross section of 16%.Comment: 11 papes, 4 figures, submitted to Physics Letters B (accepted), gzipped tar file, changed content
    corecore