274 research outputs found
A Unifying Framework for Sparsity-Constrained Optimization
In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then propose an algorithmic framework to tackle the considered class of problems and prove its convergence to points satisfying the newly introduced concept of stationarity. We further show that, by suitably choosing the neighborhood, other well-known optimality conditions from the literature can be recovered at the limit points of the sequence produced by the algorithm. Finally, we analyze the computational impact of the neighborhood size within our framework and in the comparison with some state-of-the-art algorithms, namely, the Penalty Decomposition method and the Greedy Sparse-Simplex method. The algorithms have been tested using a benchmark related to sparse logistic regression problems
Acceleration with Self-Injection for an All-Optical Radiation Source at LNF
We discuss a new compact gamma-ray source aiming at high spectral density, up
to two orders of magnitude higher than currently available bremsstrahlung
sources, and conceptually similar to Compton Sources based on conventional
linear accelerators. This new source exploits electron bunches from
laser-driven electron acceleration in the so-called self-injection scheme and
uses a counter-propagating laser pulse to obtain X and gamma-ray emission via
Thomson/Compton scattering. The proposed experimental configuration inherently
provides a unique test-bed for studies of fundamental open issues of
electrodynamics. In view of this, a preliminary discussion of recent results on
self-injection with the FLAME laser is also given.Comment: 8 pages, 10 figures, 44 references - Channeling 2012 conferenc
X-rays and Protostars in the Trifid Nebula
The Trifid Nebula is a young HII region recently rediscovered as a
"pre-Orion" star forming region, containing protostars undergoing violent mass
ejections visible in optical jets as seen in images from the Infrared Space
Observatory and the Hubble Space Telescope. We report the first X-ray
observations of the Trifid nebula using ROSAT and ASCA. The ROSAT image shows a
dozen X-ray sources, with the brightest X-ray source being the O7 star, HD
164492, which provides most of the ionization in the nebula. We also identify
85 T Tauri star and young, massive star candidates from near-infrared colors
using the JHKs color-color diagram from the Two Micron All Sky Survey (2MASS).
Ten X-ray sources have counterpart near-infrared sources. The 2MASS stars and
X-ray sources suggest there are potentially numerous protostars in the young
HII region of the Trifid. ASCA moderate resolution spectroscopy of the
brightest source shows hard emission up to 10 keV with a clearly detected Fe K
line. The best model fit is a two-temperature (T = 1.2x10^6 K and 39x10^6 K)
thermal model with additional warm absorbing media. The hotter component has an
unusually high temperature for either an O star or an HII region; a typical
Galactic HII region could not be the primary source for such hot temperature
plasma and the Fe XXV line emission. We suggest that the hotter component
originates in either the interaction of the wind with another object (a
companion star or a dense region of the nebula) or from flares from deeply
embedded young stars.Comment: Accepted in ApJ (Oct, 20 issue, 2001
Chondrogenic potential of chondrocytes in hyaluronic acid/PEG-based hydrogels is dependent on the hyaluronic acid concentration
Purpose: Hydrogels based on PEG and methacrylated poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate) (M10P10) are promising biomaterials for Biofabrication of cartilage constructs. Addition of hyaluronic acid (HA) to a hydrogel improves printability by increasing the viscosity. Methacrylating HA (HAMA) can ensure covalent binding in M10P10 hydrogels after UV-cross-linking. Chondrocytes can interact with HAMA via their CD44 receptor, however, the influence of HAMA on chondrogenic potential is unclear. This study aimed to evaluate the influence of different HAMA concentrations on chondrogenesis of chondrocytes in M10P10/HAMA hydrogels. Materials & Methods: Equine chondrocytes were encapsulated in M10P10 hydrogels containing different HAMA concentrations. Cylindrical constructs were cast, UV-cross-linked, and cultured in TGF-ÎČ-containing medium. Constructs were analyzed for evidence of cartilage formation. Results: Preliminary data showed an increase in glycosaminoglycan (GAG)/DNA for constructs with low HAMA concentrations (0.1-0.25%) while no differences were found for higher HAMA concentrations, compared to hydrogels without HAMA (Figure 1a). Further, constructs without or with low HAMA concentrations (0.1-0.5%) demonstrated collagen type II positive areas, while this was less pronounced in constructs with 0.5-1% HAMA (n=3, Figure 1b). Conclusion: Preliminary results indicate a dose-dependent effect of HAMA on chondrogenesis of chondrocytes: low concentrations (0.1-0.25%) increase GAG production while higher concentrations (0.5-1%) have no effect on GAG production and reduce collagen type II synthesis. Ongoing evaluations will reveal the extent of chondrogenesis and its association with HAMA concentrations in M10P10/HAMA, and the mechanism responsible for the dose-dependent effect. This study will impact the use of HAMA as viscosity enhancer to improve the printability of hydrogel
A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics
Stimuli-responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell-instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low-intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli-responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices
Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications
One of the most robust methods, demonstrated up to date, of accelerating
electron beams by laser-plasma sources is the utilization of plasma channels
generated by the capillary discharges. These channels, i.e., plasma columns
with a minimum density along the laser pulse propagation axis, may optically
guide short laser pulses, thereby increasing the acceleration length, leading
to a more efficient electron acceleration. Although the spatial structure of
the installation is simple in principle, there may be some important effects
caused by the open ends of the capillary, by the supplying channels etc., which
require a detailed 3D modeling of the processes taking place in order to get a
detailed understanding and improve the operation. However, the discharge
plasma, being one of the most crucial components of the laser-plasma
accelerator, is not simulated with the accuracy and resolution required to
advance this promising technology. In the present work, such simulations are
performed using the code MARPLE. First, the process of the capillary filling
with a cold hydrogen before the discharge is fired, through the side supply
channels is simulated. The main goal of this simulation is to get a spatial
distribution of the filling gas in the region near the open ends of the
capillary. A realistic geometry is used for this and the next stage
simulations, including the insulators, the supplying channels as well as the
electrodes. Second, the simulation of the capillary discharge is performed with
the goal to obtain a time-dependent spatial distribution of the electron
density near the open ends of the capillary as well as inside the capillary.
Finally, to evaluate effectiveness of the beam coupling with the channeling
plasma wave guide and electron acceleration, modeling of laser-plasma
interaction was performed with the code INF&RNOComment: 11 pages, 9 figure
On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas
A method for the asymmetric focusing of electron bunches, based on the active
plasma lensing technique is proposed. This method takes advantage of the strong
inhomogeneous magnetic field generated inside the capillary discharge plasma to
focus the ultrarelativistic electrons. The plasma and magnetic field parameters
inside the capillary discharge are described theoretically and modeled with
dissipative magnetohydrodynamic computer simulations enabling analysis of the
capillaries of rectangle cross-sections. Large aspect ratio rectangular
capillaries might be used to transport electron beams with high emittance
asymmetries, as well as assist in forming spatially flat electron bunches for
final focusing before the interaction point.Comment: 16 pages, 7 figures, 1 tabl
Atmospheric velocity fields in tepid main sequence stars
The line profiles of the stars with v sin i below a few km/s can reveal
direct signatures of local velocity fields (e.g. convection) in stellar
atmospheres. This effect is well established in cool main sequence stars, and
has been detected and studied in three A stars. This paper reports observations
of main sequence B, A and F stars with two goals: (1) to identify additional
stars having sufficiently low values of v sin i to search for spectral line
profile signatures of local velocity fields, and (2) to explore how the
signatures of the local velocity fields in the atmosphere depend on stellar
parameters such as effective temperature T_eff and peculiarity type.
For stars having T_eff below about 10000 K, we always detect local
atmospheric velocity fields indirectly through a non-zero microturbulence
parameter, but not for hotter stars. Among the A and F stars in our sample
having the sharpest lines, direct tracers of atmospheric velocity fields are
found in six new stars. The velocity field signatures identified include
asymmetric excess line wing absorption, deeper in the blue line wing than in
the red; line profiles of strong lines that are poorly fit by computed
profiles; and strong lines that are broader than they should be for the v sin i
values deduced from weak lines. These effects are found in both normal and Am
stars, but seem stronger in Am stars.
These data still have not been satisfactorily explained by models of
atmospheric convection, including numerical simulations.Comment: Acepted for publication by Astronomy and Astrophysic
- âŠ