238 research outputs found
Mass as a Relativistic Quantum Observable
A field state containing photons propagating in different directions has a
non vanishing mass which is a quantum observable. We interpret the shift of
this mass under transformations to accelerated frames as defining space-time
observables canonically conjugated to energy-momentum observables. Shifts of
quantum observables differ from the predictions of classical relativity theory
in the presence of a non vanishing spin. In particular, quantum redshift of
energy-momentum is affected by spin. Shifts of position and energy-momentum
observables however obey simple universal rules derived from invariance of
canonical commutators.Comment: 5 pages, revised versio
Does quantum mechanics tell an atomistic spacetime?
The canonical answer to the question posed is "Yes." -- tacitly assuming that
quantum theory and the concept of spacetime are to be unified by `quantizing' a
theory of gravitation. Yet, instead, one may ponder: Could quantum mechanics
arise as a coarse-grained reflection of the atomistic nature of spacetime? --
We speculate that this may indeed be the case. We recall the similarity between
evolution of classical and quantum mechanical ensembles, according to Liouville
and von Neumann equation, respectively. The classical and quantum mechanical
equations are indistinguishable for objects which are free or subject to
spatially constant but possibly time dependent, or harmonic forces, if
represented appropriately. This result suggests a way to incorporate anharmonic
interactions, including fluctuations which are tentatively related to the
underlying discreteness of spacetime. Being linear and local at the quantum
mechanical level, the model offers a decoherence and natural localization
mechanism. However, the relation to primordial deterministic degrees of freedom
is nonlocal.Comment: Based on invited talks at Fourth International Workshop DICE2008,
held at Castello Pasquini / Castiglioncello, Italy, 22-26 September 2008 and
at DISCRETE'08 - Symposium on Prospects in the Physics of Discrete
Symmetries, held at IFIC, Valencia, Spain, 11-16 December 2008 - to appear in
respective volumes of Journal of Physics: Conference Serie
Confined Quantum Time of Arrivals
We show that formulating the quantum time of arrival problem in a segment of
the real line suggests rephrasing the quantum time of arrival problem to
finding states that evolve to unitarily collapse at a given point at a definite
time. For the spatially confined particle, we show that the problem admits a
solution in the form of an eigenvalue problem of a compact and self-adjoint
time of arrival operator derived by a quantization of the classical time of
arrival, which is canonically conjugate with the Hamiltonian in closed subspace
of the Hilbert space.Comment: Figures are now include
Noncanonical quantum optics
Modification of the right-hand-side of canonical commutation relations (CCR)
naturally occurs if one considers a harmonic oscillator with indefinite
frequency. Quantization of electromagnetic field by means of such a non-CCR
algebra naturally removes the infinite energy of vacuum but still results in a
theory which is very similar to quantum electrodynamics. An analysis of
perturbation theory shows that the non-canonical theory has an automatically
built-in cut-off but requires charge/mass renormalization already at the
nonrelativistic level. A simple rule allowing to compare perturbative
predictions of canonical and non-canonical theories is given. The notion of a
unique vacuum state is replaced by a set of different vacua. Multi-photon
states are defined in the standard way but depend on the choice of vacuum.
Making a simplified choice of the vacuum state we estimate corrections to
atomic lifetimes, probabilities of multiphoton spontaneous and stimulated
emission, and the Planck law. The results are practically identical to the
standard ones. Two different candidates for a free-field Hamiltonian are
compared.Comment: Completely rewritten version of quant-ph/0002003v2. There are
overlaps between the papers, but sections on perturbative calculations show
the same problem from different sides, therefore quant-ph/0002003v2 is not
replace
Duality between a deterministic cellular automaton and a bosonic quantum field theory in 1+1 dimensions
Methods developed in a previous paper are employed to define an exact
correspondence between the states of a deterministic cellular automaton in 1+1
dimensions and those of a bosonic quantum field theory. The result may be used
to argue that quantum field theories may be much closer related to
deterministic automata than what is usually thought possible. Version 2 had a
minor typo corrected and notation was made more consistent.Comment: 18 pages (incl. Title page). No figure
Time on a Rotating Platform
Traditional clock synchronisation on a rotating platform is shown to be
incompatible with the experimentally established transformation of time. The
latter transformation leads directly to solve this problem through noninvariant
one-way speed of light. The conventionality of some features of relativity
theory allows full compatibility with existing experimental evidence.Comment: 12 pages, Latex, no figure. Copies available at [email protected]
accepted for publication in Found. Phys. Let
Lorentz-covariant quantum mechanics and preferred frame
In this paper the relativistic quantum mechanics is considered in the
framework of the nonstandard synchronization scheme for clocks. Such a
synchronization preserves Poincar{\'e} covariance but (at least formally)
distinguishes an inertial frame. This enables to avoid the problem of a
noncausal transmision of information related to breaking of the Bell's
inequalities in QM. Our analysis has been focused mainly on the problem of
existence of a proper position operator for massive particles. We have proved
that in our framework such an operator exists for particles with arbitrary
spin. It fulfills all the requirements: it is Hermitean and covariant, it has
commuting components and moreover its eigenvectors (localised states) are also
covariant. We have found the explicit form of the position operator and have
demonstrated that in the preferred frame our operator coincides with the
Newton--Wigner one. We have also defined a covariant spin operator and have
constructed an invariant spin square operator. Moreover, full algebra of
observables consisting of position operators, fourmomentum operators and spin
operators is manifestly Poincar\'e covariant in this framework. Our results
support expectations of other authors (Bell, Eberhard) that a consistent
formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure
Preface
One of the current challenges in plant biology is the development of quantitative phenotyping approaches to link the genotype and the environment to plant structural, functional, and yield characteristics in order to meet the growing demands for sustainable food, feed, and fuel. The genotype of a plant consists of all of the hereditary information within the individual, whilst the phenotype, which represents the morphological, physiological, anatomical, and developmental characteristics, is the result of the interaction between the genotype and the environment. Understanding this interaction is one of the major challenges in plant sciences. In plant breeding, the ultimate goal is the improvement of traits of agricultural importance related to disease resistance, high yields, and the plant’s ability to grow in unfavourable environmental conditions. Currently, breeding approaches produce an annual yield increase of approximately 1% for major crops, which is below the over 2% increase needed to meet the global demands for food by 2050 (Ray et al., 2013).Rapid developments in plant molecular biology and in molecular-based breeding techniques have resulted in an increasing number of species being sequenced and large collections of mutants, accessions, and recombinant lines allowing detailed analysis of gene functions. High-definition genotyping can now be carried out on thousands of plants in an automated way at continuously decreasing costs, thereby facilitating association genetics and the determination of multi-parental quantitative trait loci (QTLs) (Poland and Rife, 2012). For transcriptomic, proteomic, and metabolomic analyses large, often robotized, platforms are available allowing detailed characterization of the biochemical status of plants at a reasonable cost (Ehrhardt and Frommer, 2012). By contrast, an understanding of the link between genotype and phenotype has progressed more slowly and is the major limiting step i
Hypercomplex quantum mechanics
The fundamental axioms of the quantum theory do not explicitly identify the
algebraic structure of the linear space for which orthogonal subspaces
correspond to the propositions (equivalence classes of physical questions). The
projective geometry of the weakly modular orthocomplemented lattice of
propositions may be imbedded in a complex Hilbert space; this is the structure
which has traditionally been used. This paper reviews some work which has been
devoted to generalizing the target space of this imbedding to Hilbert modules
of a more general type. In particular, detailed discussion is given of the
simplest generalization of the complex Hilbert space, that of the quaternion
Hilbert module.Comment: Plain Tex, 11 page
Classical Vs Quantum Probability in Sequential Measurements
We demonstrate in this paper that the probabilities for sequential
measurements have features very different from those of single-time
measurements. First, they cannot be modelled by a classical stochastic process.
Second, they are contextual, namely they depend strongly on the specific
measurement scheme through which they are determined. We construct
Positive-Operator-Valued measures (POVM) that provide such probabilities. For
observables with continuous spectrum, the constructed POVMs depend strongly on
the resolution of the measurement device, a conclusion that persists even if we
consider a quantum mechanical measurement device or the presence of an
environment. We then examine the same issues in alternative interpretations of
quantum theory. We first show that multi-time probabilities cannot be naturally
defined in terms of a frequency operator. We next prove that local hidden
variable theories cannot reproduce the predictions of quantum theory for
sequential measurements, even when the degrees of freedom of the measuring
apparatus are taken into account. Bohmian mechanics, however, does not fall in
this category. We finally examine an alternative proposal that sequential
measurements can be modelled by a process that does not satisfy the Kolmogorov
axioms of probability. This removes contextuality without introducing
non-locality, but implies that the empirical probabilities cannot be always
defined (the event frequencies do not converge). We argue that the predictions
of this hypothesis are not ruled out by existing experimental results
(examining in particular the "which way" experiments); they are, however,
distinguishable in principle.Comment: 56 pages, latex; revised and restructured. Version to appear in
Found. Phy
- …