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Abstract
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1. Introduction

The idea that deterministic theories and quantum theories may be very closely related,
has been advocated by this author for a number of years[1]. To understand this relation,
some issues needed to be further clarified. It has always been obvious that determinis-
tic, time reversible systems can be cast in a quantum mechanical formalism, where the
evolution is described by a hamiltonian that in no fundamental way differs from other,
obviously quantum mechanical hamiltonians. However, in many cases, different choices
of the hamiltonian describe the same physical model, in particular if the time variable is
restricted to integral time values (in some units). On the other hand, one would like to
implement locality of a deterministic system, such as a cellular automaton, by postulating
a hamiltonian that can be regarded as the integral (or sum) of a local hamilton density.
This latter procedure is not straightforward. We found interesting examples where this
can be done, but a systematic formalism still seems to be lacking.

Recently, we elaborated a scheme that enables us to map systems with pairs of integers
onto other systems where these pairs are replaced by pairs of real but non commuting
numbers[2]. This mapping requires the machinery of quantum mechanics. States of the
discrete system may well be postulated to evolve completely deterministically, but this
is no impediment against treating them as states in a Hilbert space. After our mapping
is applied, much of their deterministic nature becomes hidden, and the system takes the
shape of a quantum theory. Indeed, it is a real quantum theory, including Born’s inter-
pretation of the squares of the amplitudes as representing probabilities. Consequently,
we arrive at a theory of quantum wave functions (which is what quantum states look like
when defined on the real line), evolving completely in line with an ordinary Schrödinger
equation, yet it is a deterministic theory in disguise. The importance of this mapping is
its potential usefulness in quantum field theories. There, we have hamiltonians that are
integrals of hamilton densities. We set out to follow the following strategy: turn a simple,
exactly soluble cellular automaton into an exactly soluble quantum field theory, derive its
hamiltonian, and subsequently add interaction terms. The hamiltonian will receive small,
local corrections so that now a cellular automaton can be mapped onto an interacting
quantum field theory. From there, find our way to the Standard Model.

We claim that, in spite of its quantum mechanical appearance, the Standard Model
may also be a deterministic system in disguise. The author is aware of the fact that most
of his readers will not be prepared to jump so such a conclusion; in particular those who
have Bell’s inequaities[3][4] in mind will not be inclined to accept the idea. But then we
would invite the reader to study the transformation presented in this paper. Here, we
display how the mapping goes for non-interacting, massless bosons in one space- and one
time dimension. The resulting quantum field theory is restricted to a discrete space-time
lattice, but the lattice length, a , may be taken to be as small as we wish, and indeed
imposing a lattice cut-off is standard practice in quantum field theory. In more realistic
theories, such a lattice is suspected to replace some much more sophisticated ultraviolet
cut-off induced by the gravitational force at the Planck scale.

The quantum hamiltonian of the theory is modified by the lattice artifacts in a way to
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be specified later; in any case, there will be left-moving particles and right-moving particles
that show no interactions at all. Being restricted to wave functions on the lattice, we see
right-away that these particles represent quantised units of information moving to the left
and to the right, both with the speed of light.

Our cellular automaton behaves just like this. It is defined by having two sets of
integers: Q(x, t) are defined on the same lattice sites, while P (x, t) are defined on x
integer but t is integer plus 1

2
. These Q and P variables will now also be seen to send

discrete packages of data to the left and to the right, just like our bosonic model, and
for this reason one could already suspect that a mapping between the automaton and the
bosonic model should exist. This is the mapping that will be constructed in this paper.
The mapping is far from trivial, as the reader will surely discover.

Initially, we intended also to describe the introduction of mass terms and interaction
terms, along the lines sketched above, but in the 1+1 dimensional system we encountered
an obstacle against this: both the cellular automaton and the quantum field theory feature
a Goldstone symmetry[5] forcing the excitations to be massless. Breaking the Goldstone
symmetry would require non-local interactions of a type we would rather avoid, while it is
known that interacting quantum field theories in 1+1 dimensions cannot have Goldstone
symmetries[6]. We conclude that the introduction of interactions and masses will require
more advanced techniques or generalization to more dimensions, first.

Perhaps this is not necessary. Our mapping may have more direct implications for
string and superstring theories. These do contain massless bosons on a 1+1 dimensional
world sheet, so our observation may imply that determinism and discreteness may be
considered in a systematic way for string theory. This could lead to new models, or at
least new interpretations of the existing models.

2. The continuum quantum field theory

Consider first the standard, massless, bosonic field theory in 1+1 dimensions, described
by a lagrangian and a hamiltonian,

L = −1
2
(∂tq

2 − ∂xq
2) ; H =

∫

dx(1
2
p2 + 1

2
∂xq

2) , (2.1)

where we use the symbol p(x) to denote the canonical momentum field associated to the
scalar field q(x) , which here obeys p(x) = ∂tq(x) . The equal-time commutation rules
are usually:

[q(x), q(y)] = [p(x), p(y)] = 0 ; [q(x), p(y)] = iδ(x− y) . (2.2)

If we now include the time variable by writing q(x, t) and p(x, t) in Heisenberg notation,
the solution of the field equations can be written as follows:

aL(x, t) = p(x, t) + ∂xq(x, t) = aL(x+ t) ; (2.3)

aR(x, t) = p(x, t)− ∂xq(x, t) = aR(x− t) . (2.4)

2



In terms of these variables, the hamiltonian is

H =

∫

dx 1
4

(

(aL(x))2 + (aR(x))2
)

, (2.5)

and using k to indicate momentum variables, we have in momentum space

H =

∫ ∞

0

dk 1
2

(

(aL†(−k)aL(−k) + aR†(k)aR(k)
)

, (2.6)

k, k′ > 0 : [aL(−k), aL(−k′)] = 0 , [aL(−k), aL†(−k′)] = 2kδ(k − k′) . (2.7)

[aR(k), aR(k′)] = 0 , [aR(k), aR†(k′)] = 2kδ(k − k′) . (2.8)

In our notation, aL,R(k) are the annihilation and creation operators apart from a factor√
2k , so the hamiltonian (2.5) can be written as

H =

∫ ∞

0

dk (kNL(−k) + kNR(k)) . (2.9)

where NL,R(∓k)dk are the occupation numbers counting the left and right moving par-
ticles (we subtracted the vacuum values for the energy). The energies of these particles
are equal to the absolute values of their momentum. All of this is completely standard
and can be found in all the text books.

3. Notation

In the previous Section, we still used (more or less) conventional notation, since everything
was in the continuum. On the lattice, however, we will pick a somewhat less standard
convention, as it will simplify the calculations there significantly. In the sequel, we will
use

capital Latin letters, N, P, Q, X, · · · , to indicate integer valued fields, (3.1)

lower case Latin letters, a, p, q, · · · , to indicate real numbers, and (3.2)

lower case Greek letters, α, η, ξ, λ, · · · , for fractional numbers, (3.3)

the latter being usually confined to the interval (−1
2
, 1

2
] . An exception is the lattice

coordinates x, t , which are in lower case because they are not used as field variables.

Frequent use will be made of the number

ǫ = e2π ≈ 535.49 · · · , so that e2πiα ≡ ǫiα , and ǫiZ = 1 if Z ∈ Z . (3.4)

If we have integers Q, P, · · · , we will often associate a Hilbert space of states to these:
|Q, P, · · ·〉 . Then, there will be operators ηQ, ηP , · · · , defined by

ǫiNηQ |Q, P, · · ·〉 = |Q+N, P, · · ·〉 ; ǫiNηP |Q, P, · · ·〉 = |Q, P +N, · · ·〉 . (3.5)
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In general, these operators will have eigenvalues restricted to be in the interval (−1
2
, 1

2
] .

The matrix elements of the ηQ operators can readily be calculated[2]:

ηQ =
∑

N 6=0

i

2πN
(−1)NǫiNηQ , 〈Q1|ηQ|Q2〉 =

i

2π
(δQ1Q2

− 1)
(−1)Q2−Q1

Q2 −Q1

. (3.6)

We will need to know the commutator between the operators ηQ and Q :

〈Q1|[ηQ, Q]|Q2〉 = (Q2 −Q1)〈Q1|ηQ|Q2〉 =
i

2π

(

δQ1Q2
− (−1)Q2−Q1

)

. (3.7)

Because we wish to keep factors 2π in the exponents (to be absorbed when we use
ǫ instead of e ), our commutation rules for p and q operators (which are real numbers)
will be

[q, p] = i/2π , (3.8)

which means that it is h rather than ~ that we normalize to one.

4. Quantum field theory on the 1+1 dimensional lattice

Inserting a lattice cut-off for the UV divergences in quantum field theories is also standard
practice. Restricting ourselves to integral values of the x coordinate, we replace the
commutation rules (2.2) by

[q(x), q(y)] = [p+(x), p+(y)] = 0 ; [q(x), p+(y)] = i
2π
δx,y (4.1)

(the reason for the superscript + will be explained later, Eqs. (4.14) and (A.1)). The
exact form of the hamiltonian on the lattice depends on how we wish to deal with the
lattice artifacts. The choices made below might seem somewhat artificial or special, but it
can be verified that most alternative choices one can think of can be transformed to these
by simple latticle field transformations, so not much generality is lost. It is important
however that we wish to keep the expression (2.9) for the hamiltonian: also on the lattice,
we wish to keep the same dispersion law as in the continuum, so that all excitations must
move left or right exactly with the same speed of light.

The lattice expression for the left- and right movers will be

aL(x+ t) = p+(x, t) + q(x, t)− q(x− 1, t) ; (4.2)

aR(x− t) = p+(x, t) + q(x, t)− q(x+ 1, t) . (4.3)

They obey the commutation rules

[aL, aR] = 0 ; [aL(x), aL(y)] = ± i
2π

if y = x± 1 ; else 0 ; (4.4)

[aR(x), aR(y)] = ∓ i
2π

if y = x± 1 ; else 0 . (4.5)
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In momentum space, writing

aL,R(x) ≡
∫

1
2

−
1
2

dκ aL,R(κ) ǫiκx , (4.6)

the commutation rules are

[aL(κ1), a
L(−κ2)] = − 1

π
δ(κ1 − κ2) sin(2πκ1) ; (4.7)

[aR(κ1), a
R(−κ2)] = 1

π
δ(κ1 − κ2) sin(2πκ1) . (4.8)

If we want the hamiltonian to take the form (2.9), then, in terms of the creation and
annihilation operators (4.7) and (4.8),the hamiltonian must be

H =

∫

1
2

0

dκ
π κ

sin(2πκ)

(

aL(κ) aL(−κ) + aR(κ) aR(−κ)
)

. (4.9)

Since, in momentum space, Eqs. (4.2) and (4.3) take the form

aL(κ) = p+(κ) + (1− ǫ−iκ)q(κ) , aR(κ) = p+(κ) + (1− ǫiκ)q(κ) , (4.10)

after some shuffling, we find the hamiltonian

H = π

∫

1
2

0

dκ
( κ

tan πκ
|p+(κ)|2 + 4κ tanπκ |q(κ) + 1

2
p+(κ)|2

)

, (4.11)

where |p+(κ)|2 stands for p+(κ) p+(−κ) . Since the field redefinition q(x)+ 1
2
p+(x) → q(x)

does not affect the commutation rules, and

lim
κ→0

πκ

tan(πκ)
= 1 , 4 sin2(πκ)|q(κ)|2 → |(∂xq)(κ)|2 , (4.12)

we see that the continuum limit (2.1), (2.6) is obtained when the lattice length scale is
sent to zero.

We now notice that the operators aL(x, t) = aL(x+ t) and aR(x, t) = aR(x− t) move
exactly one position after one unit time step. Therefore,

aL(x, 1) = aL(x+ 1, 0) , aR(x, 1) = aR(x− 1, 0) , etc. (4.13)

and now we can use this to eliminate p+(x, t) and q(x, t) from these equations. Writing

p+(x, t) ≡ p(x, t + 1
2
) , (4.14)

one arrives at the equations

q(x, t+ 1) = q(x, t) + p(x, t+ 1
2
) ; (4.15)

p(x, t + 1
2
) = p(x, t− 1

2
) + q(x− 1, t)− 2q(x, t) + q(x+ 1, t) . (4.16)
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We now see why we had to shift the field q(x, t) by half the field momentum in Eq. (4.11):
it puts the field at the same position t + 1

2
as the momentum variable p+(x, t) .

Thus, we end up with a quantum field theory where not only space but also time is
on a lattice. The momentum values p(x, t+ 1

2
) can be viewed as variables on the timelike

links of the lattice.

At small values of κ , the hamiltonian (4.9), (4.11) closely approaches that of the
continuum theory, and so it obeys locality conditions there. For this reason, the model
would be interesting indeed, if this is what the cellular automaton is going to match.
However, there is a problem with it. At values of κ approaching κ → ±1

2
, the kernels

diverge. Suppose we would like to write the expression (4.9) in position space as

H =
∑

x, s

M|s|

(

aL(x) aL(x+ s) + aR(x) aR(x+ s)
)

, (4.17)

then Ms would be obtained by fourier transforming the coefficient πκ/ sin(2πκ) on the
unit interval for κ . One obtains

Ms =

∫

1
2
−λ

−
1
2
+λ

κdκ

sin(2πκ)
ǫ−isκ = 1

2π

{

log 2
λ
−

∑s/2−1
k=0

1
k+1/2

if s = even

log(2λ) +
∑(s−1)/2

k=1
1
k

if s = odd
(4.18)

where λ is a tiny cut-off parameter. The divergent part is

1
2π
( log

1

λ
)
∑

x,y

(−1)x−y
(

aL(x)aL(y) + aR(x)aR(y)
)

=

1
2π
( log

1

λ
)
((

∑

x

(−1)xaL(x)
)2

+
(

∑

x

(−1)xaR(x)
)2)

. (4.19)

Also the kernel 4κ tanπκ in Eq. (4.11) diverges as κ→ ±1
2
. Keeping the divergence

would make the hamiltonian non-local, as Eq. (4.19) shows. We can’t just argue that the
largest κ values require infinite energies to excite them because they do not; according to
Eq. (2.9), the energies of excitations at momentum κ are merely proportional to κ itself.
We therefore propose to make a smooth cut-off, replacing the divergent kernels such as
4κ tanπκ by expressions such as

(4κ tan πκ)(1− eΛ
2(

1
2
−κ)2) , (4.20)

where Λ can be taken to be arbitrarily large but not infinite.

5. The cellular automaton

Our cellular automaton is a model defined on a square lattice with one space dimension
x and one time coordinate t , where both x and t are restricted to be integers. The
variables are two sets of integers, one set being integer numbers Q(x, t) defined on the
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lattice sites, and the other being defined on the links connecting the point (x, t) with
(x, t+ 1) . These will be called P (x, t+ 1

2
) , but they may sometimes be indicated as

P+(x, t) ≡ P−(x, t + 1) ≡ P (x, t+ 1
2
) . (5.1)

The automaton obeys the following time evolution laws:

Q(x, t + 1) = Q(x, t) + P (x, t+ 1
2
) ; (5.2)

P (x, t+ 1
2
) = P (x, t− 1

2
) + Q(x− 1, t)− 2Q(x, t) +Q(x+ 1, t) , (5.3)

just analogously to Eqs. (4.15) and (4.16). It is also a discrete version of a classical field
theory where Q(x, t) are the field variables and P (x, t) = ∂

∂t
Q(x, t) are the classical field

momenta.

Imagining the x, t lattice to be very large, one might be interested in studying the
statistical properties of the Q and P fields. To this end, we introduce Hilbert space, just

as a tool. The basis elements of this Hilbert space are the states
∣

∣

∣
{Q(x, 0)}, {P+(x, 0)}

〉

.

If we consider a superposition of such states, we will simply define the squares of the am-
plitudes to represent the probabilities. The total probability is the length-squared of the
vector, which will usually be taken to be one. At this stage, superpositions mean nothing
more than this, and it is obvious that any chosen superposition, whose total length is one,
may represent a reasonable set of probabilities. The basis elements all evolve in terms of a
permutation operator that permutes the basis elements in accordance with the evolution
equations (5.2) and (5.3). As a matrix in Hilbert space, this permutation operator only
contains ones and zeros, and it is trivial to ascertain that statistical distributions, written
as “quantum” superpositions, evolve with the same evolution matrix.

Indeed, in what follows later, we will make frequent use of operators in this Hilbert
space, such as the operators ηQ(x) and η+P (x) , which are defined exactly as in Eq. (3.5)
in Section 3, but now at each point x at time t = 0 (the operator η+P (x) acts on the
integer P+(x, 0) ).

The time variable t is an integer, so what our evolution equations generate is an
operator U(t) obeying U(t1 + t2) = U(t1)U(t2) , but only for integral time. In principle,
it would be easy to find an operator H , to be called “hamiltonian”, such that

U(t) = ǫ−iHt ; H =
∞
∑

n=1

(−1)n−1i

2πn
(U(n)− U(−n)) . (5.4)

This equation is obtained by Fourier analysis: when −1
2
< x < 1

2
, we have

x =
∞
∑

n=1

an sin 2πnx ; an = 2

∫

1
2

−
1
2

x sin 2πx =
2(−1)n−1

2πn
. (5.5)

The problem with this hamiltonian is that

1. It is not unique: one may add any integer to any of its eigenvalues; and
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2. It is not extensive: if two parts of a system are spacelike separated, we would like
the hamiltonian to be the sum of the two separate hamiltonians, but then it will
quickly take values more than 1/2 , whereas, by construction, the hamiltonian (5.4)
will obey |H| ≤ 1/2 .

Thus, by adding appropriate multiples of integers to its eigenvalues, we would like to
transform our hamiltonian into an extensive one. The question is how to do this.

Indeed, this is the question that forced us to do the investigations described in this
paper; the hamiltonian of the quantum field theory considered here is an extensive one,
and also naturally bounded from below.

At first sight, however, the similarity between this automaton and the quantum field
theory of Section (4) may seem to be superficial at best. Quantum physicists will insist
that the quantum theory is fundamentally different.

Our procedure will force us first to compare the left-movers and the right-movers in
both theories. In Appendix A, some of the preperties of systems obeying the evolution
equations (5.2) and (5.3) are listed. Here also, it is found that the operators aL(x)
and aR(x) have the desirable properties that they are left movers and right movers, and
furthermore, they can directly be expressed in terms of the original field variables. In the
automaton, these are integers, so, the results of Appendix A imply that we must write
them as:

AL(x+ t) = P+(x, t) +Q(x, t)−Q(x− 1, t) ; (5.6)

AR(x− t) = P+(x, t) +Q(x, t)−Q(x+ 1, t) . (5.7)

Note, that these are fields that transport streams of data to the left or to the right, but
at this point the resemblance to elementary particles may still seem to be remote.

6. The mapping

We now claim that all states of the cellular automaton of Section 5 can be mapped onto
the quantum field theory states of Section 2, with a few exceptions: the mapping is nearly
though not quite one-to-one. Several ways to describe this mapping were tried, and we
found the most transparent one to be as follows. We first consider the operators ηP (x)
and ηQ(x) , as described in Sections 3 and 5. They will be identified with operators in
the quantum field theory, by observing the following.

If we have operators qi and pi obeying the commutation rules

[qi, pj] =
i
2π
δij , (6.1)

then we can readily derive the commutation properties of the exponentiated operators:

ǫiapi ǫibqj = ǫiab δij ǫibqj ǫiapi . (6.2)

8



This means that, if a and b are both integers, ǫiapi and ǫibqj commute. If we now define
the operators ηQi and ηPj as follows,

ǫiηQi = ǫ−ipi , ǫiηPj = ǫiqj , (6.3)

while furthermore restricting ηQi and ηPj all to lie within the interval (−1
2

1
2
] , then they

are uniquely defined, and they all commute. Thus, we can define all operators ηQ(x) and
η+P (x) of our cellular automaton as (minus) the fractional parts of the field momentum
operators p+(x, 0) and the field operators q(x, 0) of our quantum field theory. Note, that
ǫ−ip+(x) raises the field q(x) by one unit and ǫiq(x) raises the field p+(x) by one unit, so
indeed the operators that raise or lower fields q(x, 0) by one unit, will now do the same
for the variable Q(x, 0) of the automaton, and the operators the raise or lower p+(x, 0)
in the field theory, do the same for the variables P+(x, 0) in the cellular automaton. In
the automaton, these raising and lowering operators all commute, but so they do in the
quantum field theory.

Note, that the identification of the raising and lowering operators in the automaton
with the ones in the quantum field theory, is restricted to be valid for the states at time
t = 0 . To find how the identification is done at other times, we use the Heisenberg
notation: operators are time dependent, while states are time independent.

What has been achieved so-far is that if we have identified one state in the cellular
automaton with one state in the quantum field theory, then we can identify all other
states, simply by applying the raising and lowering operators as often as we want1. How
do we identify one state? We can rephrase this question:

We identified the fractional parts of the fields q(x, t) and p+(x, t) with cellular automaton
operators. How do we identify the integral parts?

We can’t just identify them with the variables Q(x, t) and P (x, t) because the time
evolution laws will round off the fractional parts differently. And therefore, this turns out
to be not so easy. Take the cellular automaton “vacuum” state

|Ω〉 ≡ |{Q(x, 0) = 0, P+(x, 0) = 0}〉 . (6.4)

Could this be mapped onto the ground state of the quantum field theory’s hamiltonian?
This is probably incorrect since the state |Ω〉 is orthogonal to all states obtained by
raising or lowering one of its Q or P+ values, but when applying one of the operators
ǫiN p+(x,0) or ǫiNq(x,0) to the energy ground state of the quantum field theory, these in
general do not annihilate this state.

Could |Ω〉 be mapped onto the state
∏

x ψ0(q(x, 0)) , where ψ0 is the wave function
derived in ref [2], which is orthogonal to all those states that would be obtained by
raising or lowering Q and/or P+ values? Again, this would probably be wrong, because
we cannot prove that this state is time-independent (even when we restrict ourselves to
integer time values), whereas the state |Ω〉 is.

1Indeed, this part of the identification is valid in many more cellular automaton models that can be
identified with quantum field theories, also in higher dimensions; it is the next part of the argument
however, that we do not know exactly how to generalize.
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The correct mapping is obtained by viewing Hilbert space as the product of the space
spanned by the left-movers and that spanned by the right-movers. We do the mapping
for the left-movers and the mapping for the right-movers separately.

So let us first concentrate on the left movers. The cellular automaton is then described
by the integers AL(x+ t) , as defined in Eq. (5.6). In that Hilbert space, we also have the
operators ηA(x+ t) , defined by

ǫiNηA(x)|{A(y)}〉 = |{A′(y) = A(y) +Nδxy}〉 , (6.5)

where the superscript L was temporarily omitted. As in Eq. (3.6), we can write the
matrix elements of ηA :

〈A1(x)|ηA(x)|A2(x)〉 =
i

2π
(δA1(x),A2(x) − 1)

(−1)A2(x)−A1(x)

A2(x)− A1(x)
, (6.6)

while ηA(x) commutes with all operators A(y) and ηA(y) when y 6= x .

From Eq. (6.6), we derive the commutator between ηA and A . This is as in Eq. (3.7):

〈A1|[ηA, A]|A2〉 =
i

2π

(

δA1A2
− (−1)A2−A1

)

. (6.7)

This may be written as

[ηA, A] =
i
2π
(I− |ψA〉〈ψA|) ; 〈A|ψA〉 ≡ (−1)A . (6.8)

|ψA〉 is a very special state that is defined at every spacelike point x . So we have

[ηA(x), A(y)] =
i
2π
δxy(I− |ψA(x)〉〈ψA(x)|) . (6.9)

We call |ψA(x)〉 an edge state, since it lives on the edge of the interval in η space:
ηA(x) = ±1

2
.

Our next attempt to construct the mapping consisted of omitting these bothersome
edge states. Then,

[ηA(x), A(y)]
?
= i

2π
δxy . (6.10)

This would allow us construct operators aL(x) that obey the commutation rules of the
quantum field theory, Eq. (4.4). Re-inserting the superscript L :

aL(x)
?
= AL(x) + ηLA(x− 1) . (6.11)

and similarly we coud define the right-movers. The good point about this attempt is, that
the time evolution just shifts these operators one step to the left or to the right, without
mixing them. Since in the cellular automaton, AL(x) and ηLA(x) shift the same way, this
mapping commutes with the time evolution.

Eq. (6.11) is not demonstrably false, since the constraint that we limit ourselves to
the states that are orthogonal to the edge states |ψA(x)〉 does commute with the time
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evolution. However, it is an unnatural constraint. The edge states would have finite
energy, in general, so using these operators aL and aR as creation and annihilation
operators might lead to wrong results.

A superior mapping procedure is the one introduced in Ref. [2]. We know how the
η operators are transformed, but to express the operators P+ and Q themselves, or
equivalently, the operators AL(x) and aR(x) , we have to establish a phase function in
η space, which is now an infinite-dimensional torus, that is, the product of all circles
defined by the periodic operators η+P (x, 0) and ηQ(x, 0) . The procedure goes exactly as
in Ref. [2].

We replace (6.11) by

aL(x) = − i
2π

∂

∂ηLA(x)
+

∂

∂ηLA(x)
ϕ(~ηLA(x)) − ηLA(x− 1) , (6.12)

where ϕ(~ηLA) is a phase function that depends on all values of ηLA(x) , but it is the same
function for all points x . One easily derives that, indeed the commutation relation (4.4)
holds — as long as ϕ is non-singular, and the term ηLA(x− 1) should not jump.

But, of course, ηLA(x − 1) does jump, when we restrict it to stay within the interval
(−1

2
, 1

2
] . This is what we need the phase ϕ for. It is postulated to obey the periodicity

conditions

ϕ({ηLA(x) + δx,x1
}) = ϕ({ηLA(x)}) + ηLA(x1 + 1) . (6.13)

If, in Eq. (6.12), we substitute x − 1 = x1 , we see that this expression is now strictly
periodic in η space, so now we expect no contribution from edge states.

Yet there is a contribution from an edge state, and this is because the periodicity
condition (6.13) cannot hold everywhere, since there is a clash. If we go around the torus
in two different directions, to return to the same point, a full phase rotation results. Thus
ϕ({ηLA(x)}) has vortices trapped in it, and these cause new singularities.

The function is easy to construct [2]. Write

ϕ({ηLA}) =
∑

x

ϕ(ηLA(x+ 1), ηLA(x)) ; r(η, ξ)ǫiϕ(η,ξ) ≡
∞
∑

K=−∞

ǫ−
1
2
(K−ξ)2−Kiη , (6.14)

where r and ϕ are both real functions of η and ξ . This is a special case of the elliptic
theta function ϑ3 , and it can also be written as a product[7] instead of a sum2. Due to
this property, one can also write the function ϕ(η, ξ) as follows:

ϕ(η, ξ) =

∞
∑

K=0

(

arg(1 + ǫiη+ξ−K−
1
2 ) + arg(1 + ǫ−iη−ξ−K−

1
2 )
)

. (6.15)

There is a duality property:

ϕ(η, ξ) + ϕ(ξ, η) = η ξ . (6.16)

2The function r(η, ξ) here differs by a factor ǫ−
1

2
ξ2 from the function used in Ref[1].
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Eq. (6.12) simplifies into

aL(x) = − i
2π

∂

∂ηLA(x)
+

∂

∂ηLA(x)

(

ϕ(ηLA(x+ 1), ηLA(x))− ϕ(ηLA(x− 1), ηLA(x))
)

. (6.17)

We can now compute[2] the matrix elements of aL(x) when sandwitched between two
cellular automaton states |{AL(x)}〉 :

〈 ~AL
1 |aL(x)| ~AL

2 〉 = AL(x)δ + δ
∣

∣

∣

x,x+1

(−1)∆AL(x)+∆AL(x+1)+1i∆AL(x+ 1)

∆AL(x)2 +∆AL(x+ 1)2

− δ
∣

∣

∣

x,x−1

(−1)∆AL(x)+∆AL(x−1)+1i∆AL(x− 1)

∆AL(x)2 +∆AL(x− 1)2
, (6.18)

where δ is the identity matrix in ~AL space (so that AL
1 (x) = AL

2 (x) = AL(x) ), while
δ|y,z stands for the matrix that keeps all values of AL

2 (x) equal to AL
1 (x) , except at the

points x = y and x = z , where we define

∆AL(y) ≡ AL
2 (y)−AL

1 (y) , ∆AL(z) ≡= AL
2 (z)− AL

1 (z) ; (6.19)

(the diagonal element of δ|y,z , where the terms in (6.18) would be ill-defined, are taken
to be zero).

It is now important to check the commutation rules for the field aL(x) . Since the
operators AL(x) refer to the states of the automaton, they all commute with one another,
and since the additional terms in (6.18) are diagonal in η space, they also commute with
one another (this is trivially seen to be true in Eq. (6.18) because the matrix elements
only depend on ∆AL , not on the AL

1,2(x) themselves). The non-commuting parts come
from the cross terms. Since a matrix element of [X, AL(x)] in AL space is the matrix
element of X multiplied by ∆AL(x) , one finds

[aL(x), aL(x+ 1)] = i
2π

(

1− |ψL
A(x, x+ 1)〉〈ψL

A(x, x+ 1)|
)

, (6.20)

where the new edge state is defined by

〈AL(x), AL(y) |ψL
A(x, y)〉 = (−1)A

L(x)+AL(y) . (6.21)

This edge state originates from the flux singularity in the phase function ϕ(η, ξ) located
at the corners η = ±1

2
, ξ = ±1

2
, and it can be replaced but not removed. We claim that

this state is far less harmful than the edge states encountered previously. The point is
that any state that is not orthogonal to any of these edge states, carries infinite energy.
This we see by calculating the expectation value of the hamiltonian (4.17). Plugging the
matrix elements (6.18) of aL(x) in here, we see a logarithmic divergence of positive terms
(when s = 0 ), and negative terms (when s = 2 ), but the positive ones dominate since
M0 > M2 . The odd s terms do not diverge.
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We conclude that the edge state contribution in Eq. (6.20) can be neglected whenever
states with finite energy are considered. In our construction, all eigen states of the op-
erators aL(x) are unique. Repeating the same procedure for the aR operators gives us
a complete mapping of all finite energy states of the quantum field theory onto states of
the cellular automaton. The mapping commutes with the time evolution, since both the
aL(x) operators and the aR(x) operators, just like the ones of the cellular automaton,
merely shift to the left or to the right as time evolves. An important restriction is that
we should only look at those elements of the automaton states that are orthogonal to the
edge states:

∑

P,Q

(−1)P+Q〈P,Q|ψ〉 = 0 , (6.22)

where (P,Q) = (AL(x), AL(x + 1) ) or (P,Q) = (AR(x), AR(x + 1) ) for any point x
on the lattice.

Curiously, this condition excludes the pure basis elements of the automaton such as
the state |Ω〉 , which is why in a more sophisticated theory such a constraint might be
undesirable. We observe that the exceptional states, the edge states (6.21), consist of a
single state at every site. As such, it may describe fermions on the lattice. In a next
publication, it will be explained that the bothersome constraint is lifted if we map the
cellular automaton of Section 5 onto a supersymmetric 1+1 dimensional quantum model,
with one bosonic field together with one fermion.

In the quantum field theory, we found another mild restriction: all states with particles
in the very highest energy mode, κ = ±1

2
, contribute non-locally to the hamiltonian, since

the kernel (4.9) diverges there. This is why we propose the cut-off (4.20).

We emphasize once more: the important reason why this mapping is of interest is, that
now we know the hamiltonian, Eq. (4.17), where we can plug in the operators aL,R(x)
since we know their matrix elements (6.18).

This result is quite non-trivial. Since this hamiltonian correctly transports the left
movers to the left and the right movers to the right, by one step in every unit of time,
also the integral parts AL(x) and AR(x) move correctly, as well as their fractional parts,
ηLA(x− 1) and ηRA(x+1) . So this is the correct hamiltonian that generates the evolution
law of the automaton. Being identical to a quantum field theory hamiltonian, it no longer
suffers from any positivity problem, which was an important difficulty in previous work[1].

7. Interactions

Up till this point, our construction might be looked upon as a mere mathematical curiosity,
but physically rather boring, since both the cellular automaton and the quantum field
theory decribe nothing but non-interacting particles. The left-movers do not react at all
on the presence of right-movers and vice versa.

In principle, introducing interactions at both sides of the mapping seems to be straight-
forward. Suppose that we make a minor modification in the cellular automaton’s evolution
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law. After every move as the time clock counts, it is checked whether some rather im-
probable combination of cellular field variables occurs, for example: at any value of x ,

Q(x) = 0, P+(x) = 5, Q(x+ 1) = 17, Q(x− 1) = 3 . (7.1)

Only if this situation occurs, P+(x) is augmented by one unit. Another condition is
considered where P+(x) decreases by one unit. We write this action as a permutation
matrix:

P ≡ ǫ−iHint

, H int = λ
∑

x

Hint(x) . (7.2)

We already had the hamiltonian H0 =
∑

xH0(x) , the hamiltonian (4.17). To write the
effect of both interactions in a hamiltonian form, we use Baker-Campbell-Hausdorff[8]:

eA eB = eA+B+
1
2
[A,B]+··· , (7.3)

where the dots represent an infinite series of commutators. The fact that these are com-
mutators is very important, because it means that the net result can again be written as
the integral over a hamiltonian density, and this means that locality of the theory is not
dramatically affected. Now, we took the condition (7.1) to be sufficiently uncommon so
that its effect may be expected to be small. Therefore, perturbation expansion in powers
of the parameter λ in Eq. (7.2) makes sense; the higher terms only contribute of the con-
dition is met in several ways, which will reduce the numerical values of those contributions
even more. We do see now that the quantity B + 1

2
[A,B] + · · · in Eq. (7.3) generates

an ‘interaction hamiltonian’ in the quantum field theory. It is important to observe that,
with this modification, the hamiltonian not only represents a theory with interaction, but
it still can be written as the sum over hamiltonian densities. Since the hamiltonian den-
sity is corrected by finite correction terms, it continues to have well-defined lower bounds:
the vacuum state.

However, in this particular case, there is a serious complication that practically inval-
idates this procedure: to express the original fields q(x, t) of the cellular automaton in
terms of the aL and aR operators that we constructed, one has to invert Eq. (4.10) , and
for small κ values this blows up. Clearly, only the derivatives of the q fields occur in the
original model, not the q fields themselves. So, in our special case, it seems that we can
only handle interactions where the interaction hamiltonian is a function of ∂q/∂x rather
than q itself. However, if we try to get interactions this way, we cannot lift the Goldstone
symmetry[5] that made the particles massless. Not only might our original intention to
create interaction and mass terms be difficult to realize in this model, so that any at-
tempts to create mass terms might give rise to unacceptable non-localities; unfortunately,
this also jeopardises our attempts to get any interactions at all, because interacting field
theories in 1+1 dimensions are known not to allow for a Goldstone realization of a contin-
uous symmetry[6]. We believe that this difficulty is an artifact of the model considered;
perhaps more sophisticated models can be found, in particular in higher space dimensions,
where such difficulties do not arise. As for this paper, we do not expand any further on
the topic of interactions.

Our main intention with this paper was to demonstrate in what way cellular automata
can actually behave as quantum field theories and vice versa.
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8. Discussion

It is difficult to explain more clearly the theory that there may be determinism behind
what is called quantum mechanics today, than by pointing to the mapping displayed in
this paper. Every operator in the quantised field theory has its counterpart in the variables
describing a cellular automaton. What exactly this means concerning the interpretation of
the EPR paradox[4] and Bell’s inequalities[3], is difficult to phrase precisely. An attempt
was made by the author in Ref.[9]. For one thing, our theory is definitely not a hidden
variable theory of the type that Bell considered in his paper[3]; however these arguments
clearly failed to convince many people. Perhaps the best argument consists of stating that
our theory is nothing but an extrapolation of the mathematics phrased here, claiming that
there is no logical obstacle against continuation of these models towards systems that more
and more resemble the Standard Model of the Elementary Particles.

Yet there are a few subtleties. A subset of the cellular automaton states, being all
states that are not orthogonal to the edge states, have to be left out of the mapping,
as they would have infinite energy in the quantised field theory. This constraint is not
insignificant, because it means that for all left moving modes and for all right moving
modes, at every pair of points, Eq. (6.22) implies that we must postulate that

∑

AL(x), AL(x+1)

(−1)A
L(x)+AL(x+1)| ~AL〉 = 0 , (8.1)

and the cellular ground state, |Ω〉 = |0, 0, · · ·〉 , does not obey this constraint. We must
conclude that either the quantum field theoretical description of cellular automata only
applies to automata that are in rather highly excited modes, far away from the trivial
state |Ω〉 , or we have to add fermions to the bosonic theory.

Secondly, the resulting quantum field theory has a hamiltonian that approaches the
continuum theory smoothly as the lattice length a tends to zero, but the lattice edge
states, the particles at maximal momentum, κ = ±1

2
, contribute to the hamiltonian non-

locally, so that the kernel Ms of the hamiltonian is non-local after all. We would insist
that this feature would be unnoticeable for observers in a universe who have no access to
particles with such a high momentum.

Note however that we do have all states of the quantised field theory in our cellular
automaton, as we reproduce Eq. (2.9), describing all possible occupation numbers of the
particles. Note also that the cellular automaton model itself is entirely local, so if we use
that as our “ontological” underlying theory, the apparent signals of some non-locality in
the effective bosonic theory cannot be used to explain what some observers regard as a
necessary non-locality in hidden variables theories for quantum mechanics.

In principle, interactions can be introduced, by adding small modifications to the
cellular evolution rule, as explained in Section 7. However, it is also explained there that
there are pathologies in 1+1 dimensions. These are caused by the Goldstone symmetry
that we built in. As is well-known[6], interacting quantum field theories cannot realise
Goldstone symmetries in 1+1 dimensions, while we also found it difficult to break the
symmetry. This also obstructs the generation of mass terms.
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Our mapping may have interesting implications for string theory. Bosonic strings are
harmonic theories on a one plus one dimensional string world sheet. If we introduce a
lattice in the world sheet, strings become small solid ‘rods’ stitched together, but in our
model also target space, the 10 or 26 dimensional space-time, was made discrete. This
means that our cellular automaton is relevant for string theory, describing discrete strings
on a space-time lattice.[10]

A. Left and right movers

The cellular automaton as well as the quantised field theory will be postulated to obey
the same equations on the lattice. In both systems, we locate the field variables q(x, t)
on the regulare lattice sites (x, t) where both x and t are restricted to be integers. The
momentum variables are located conveniently on half-odd time coordinates, but sometimes
it will be more practical to locate them on integer spots. Therefore, we write

p±(x, t) ≡ p(x, t± 1
2
) . (A.1)

While in the quantized field theory these variables are operators with a continuous spec-
trum of eigenvalues, obeying the usual commutation rules (4.1), the cellular automaton
is described by replacing q(x, t) → Q(x, t) and p(x, t) → P (x, t) , where Q and P only
take integer values and all commute. In this Appendix we keep the notation q and p .

The evolution equations are Eqs. (4.15) and (4.16). It is sometimes useful to have the
complete solution of these equations forward in time:

q(0, t) =

t
∑

n=1

p+(2n− 1− t, 0) +

2t−1
∑

m=1

(−1)m−1q(m− t, 0) ; (A.2)

p+(0, t) =
2t
∑

m=0

(−1)m
(

p+(m− t, 0) + 2q(m− t, 0)
)

− q(t, 0)− q(−t, 0) . (A.3)

The q and p fields can be split up in left-movers and right-movers:

q(x, t) = qL(x+ t) + qR(x− t) ; p(x, t + 1
2
) = pL(x+ t+ 1

2
) + pR(x− t− 1

2
) , (A.4)

which obey the equations

pL(x+ 1
2
) = qL(x+ 1)− qL(x) ; pR(x− 1

2
) = qR(x− 1)− qR(x) . (A.5)

However, we will often consider the more fundamental left and right movers aL, aR ,
defined by inverting the equations (A.4) :

aL(x) = pL(x+ 1
2
) + pL(x− 1

2
) = p+(x, 0) + q(x, 0)− q(x− 1, 0) ; (A.6)

aR(x) = pR(x+ 1
2
) + pR(x− 1

2
) = p+(x, 0) + q(x, 0)− q(x+ 1, 0) . (A.7)

It is easy to verify from the basic equations (4.15) and (4.16) that the rhs of equations (A.6)
and (A.7) will roll to the left and to the right, respectively. In momentum space, aL and
aR will be associated to the particle creation and annihilation operators of the field theory.
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Assuming the commutation relations (4.1), the operators aL and aR will obey easy
commulation rules themselves, as given in Eqs. (4.4) and (4.5), while the commutation
rules for qL, qR , pL and pR will be non-local. This is why it would be difficult to intro-
duce interactions that are expressed directly in terms of the q(x) and p+(x) operators.
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