52 research outputs found
The Case for Quantum Key Distribution
Quantum key distribution (QKD) promises secure key agreement by using quantum
mechanical systems. We argue that QKD will be an important part of future
cryptographic infrastructures. It can provide long-term confidentiality for
encrypted information without reliance on computational assumptions. Although
QKD still requires authentication to prevent man-in-the-middle attacks, it can
make use of either information-theoretically secure symmetric key
authentication or computationally secure public key authentication: even when
using public key authentication, we argue that QKD still offers stronger
security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009
Workshop on Quantum and Classical Information Security; version 2 minor
content revision
Distributing entanglement and single photons through an intra-city, free-space quantum channel
We have distributed entangled photons directly through the atmosphere to a
receiver station 7.8 km away over the city of Vienna, Austria at night.
Detection of one photon from our entangled pairs constitutes a triggered single
photon source from the sender. With no direct time-stable connection, the two
stations found coincidence counts in the detection events by calculating the
cross-correlation of locally-recorded time stamps shared over a public internet
channel. For this experiment, our quantum channel was maintained for a total of
40 minutes during which time a coincidence lock found approximately 60000
coincident detection events. The polarization correlations in those events
yielded a Bell parameter, S=2.27/pm0.019, which violates the CHSH-Bell
inequality by 14 standard deviations. This result is promising for
entanglement-based free-space quantum communication in high-density urban
areas. It is also encouraging for optical quantum communication between ground
stations and satellites since the length of our free-space link exceeds the
atmospheric equivalent.Comment: 8 pages including 1 figure and 2 tables. The first two authors
contributed equally to this wor
High-fidelity transmission of entanglement over a high-loss freespace channel
Quantum entanglement enables tasks not possible in classical physics. Many
quantum communication protocols require the distribution of entangled states
between distant parties. Here we experimentally demonstrate the successful
transmission of an entangled photon pair over a 144 km free-space link. The
received entangled states have excellent, noise-limited fidelity, even though
they are exposed to extreme attenuation dominated by turbulent atmospheric
effects. The total channel loss of 64 dB corresponds to the estimated
attenuation regime for a two-photon satellite quantum communication scenario.
We confirm that the received two-photon states are still highly entangled by
violating the CHSH inequality by more than 5 standard deviations. From a
fundamental point of view, our results show that the photons are virtually not
subject to decoherence during their 0.5 ms long flight through air, which is
encouraging for future world-wide quantum communication scenarios.Comment: 5 pages, 3 figures, replaced paper with published version, added
journal referenc
Experimental demonstration of a BDCZ quantum repeater node
Quantum communication is a method that offers efficient and secure ways for
the exchange of information in a network. Large-scale quantum communication (of
the order of 100 km) has been achieved; however, serious problems occur beyond
this distance scale, mainly due to inevitable photon loss in the transmission
channel. Quantum communication eventually fails when the probability of a dark
count in the photon detectors becomes comparable to the probability that a
photon is correctly detected. To overcome this problem, Briegel, D\"{u}r, Cirac
and Zoller (BDCZ) introduced the concept of quantum repeaters, combining
entanglement swapping and quantum memory to efficiently extend the achievable
distances. Although entanglement swapping has been experimentally demonstrated,
the implementation of BDCZ quantum repeaters has proved challenging owing to
the difficulty of integrating a quantum memory. Here we realize entanglement
swapping with storage and retrieval of light, a building block of the BDCZ
quantum repeater. We follow a scheme that incorporates the strategy of BDCZ
with atomic quantum memories. Two atomic ensembles, each originally entangled
with a single emitted photon, are projected into an entangled state by
performing a joint Bell state measurement on the two single photons after they
have passed through a 300-m fibre-based communication channel. The entanglement
is stored in the atomic ensembles and later verified by converting the atomic
excitations into photons. Our method is intrinsically phase insensitive and
establishes the essential element needed to realize quantum repeaters with
stationary atomic qubits as quantum memories and flying photonic qubits as
quantum messengers.Comment: 5 pages, 4 figure
Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables
We investigate the properties of an atmospheric channel for free space
quantum communication with continuous polarization variables. In our
prepare-and-measure setup, coherent polarization states are transmitted through
an atmospheric quantum channel of 100m length on the roof of our institute's
building. The signal states are measured by homodyne detection with the help of
a local oscillator (LO) which propagates in the same spatial mode as the
signal, orthogonally polarized to it. Thus the interference of signal and LO is
excellent and atmospheric fluctuations are autocompensated. The LO also acts as
spatial and spectral filter, which allows for unrestrained daylight operation.
Important characteristics for our system are atmospheric channel influences
that could cause polarization, intensity and position excess noise. Therefore
we study these influences in detail. Our results indicate that the channel is
suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an
invitation for the special issue "Selected Papers Presented at the 2009
Spring Meeting of the Quantum Optics and Photonics Section of the German
Physical Society
Memory-built-in quantum teleportation with photonic and atomic qubits
The combination of quantum teleportation and quantum memory of photonic
qubits is essential for future implementations of large-scale quantum
communication and measurement-based quantum computation. Both steps have been
achieved separately in many proof-of-principle experiments, but the
demonstration of memory-built-in teleportation of photonic qubits remains an
experimental challenge. Here, we demonstrate teleportation between photonic
(flying) and atomic (stationary) qubits. In our experiment, an unknown
polarization state of a single photon is teleported over 7 m onto a remote
atomic qubit that also serves as a quantum memory. The teleported state can be
stored and successfully read out for up to 8 micro-second. Besides being of
fundamental interest, teleportation between photonic and atomic qubits with the
direct inclusion of a readable quantum memory represents a step towards an
efficient and scalable quantum network.Comment: 19 pages 3 figures 1 tabl
Fast optical source for quantum key distribution based on semiconductor optical amplifiers
A novel integrated optical source capable of emitting faint pulses with
different polarization states and with different intensity levels at 100 MHz
has been developed. The source relies on a single laser diode followed by four
semiconductor optical amplifiers and thin film polarizers, connected through a
fiber network. The use of a single laser ensures high level of
indistinguishability in time and spectrum of the pulses for the four different
polarizations and three different levels of intensity. The applicability of the
source is demonstrated in the lab through a free space quantum key distribution
experiment which makes use of the decoy state BB84 protocol. We achieved a
lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error
ratio as low as while the lower bound secure key rate
became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this
is the fastest polarization encoded QKD system which has been reported so far.
The performance, reduced size, low power consumption and the fact that the
components used can be space qualified make the source particularly suitable
for secure satellite communication
Free-Space distribution of entanglement and single photons over 144 km
Quantum Entanglement is the essence of quantum physics and inspires
fundamental questions about the principles of nature. Moreover it is also the
basis for emerging technologies of quantum information processing such as
quantum cryptography, quantum teleportation and quantum computation. Bell's
discovery, that correlations measured on entangled quantum systems are at
variance with a local realistic picture led to a flurry of experiments
confirming the quantum predictions. However, it is still experimentally
undecided whether quantum entanglement can survive global distances, as
predicted by quantum theory. Here we report the violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality measured by two observers
separated by 144 km between the Canary Islands of La Palma and Tenerife via an
optical free-space link using the Optical Ground Station (OGS) of the European
Space Agency (ESA). Furthermore we used the entangled pairs to generate a
quantum cryptographic key under experimental conditions and constraints
characteristic for a Space-to-ground experiment. The distance in our experiment
exceeds all previous free-space experiments by more than one order of magnitude
and exploits the limit for ground-based free-space communication; significantly
longer distances can only be reached using air- or space-based platforms. The
range achieved thereby demonstrates the feasibility of quantum communication in
space, involving satellites or the International Space Station (ISS).Comment: 10 pages including 2 figures and 1 table, Corrected typo
Increasing the imaging depth through computational scattering correction.
Imaging depth is one of the most prominent limitations in light microscopy. The depth in which we are still able to resolve biological structures is limited by the scattering of light within the sample. We have developed an algorithm to compensate for the influence of scattering. The potential of algorithm is demonstrated on a 3D image stack of a zebrafish embryo captured with a selective plane illumination microscope (SPIM). With our algorithm we were able shift the point in depth, where scattering starts to blur the imaging and effect the image quality by around 30 µm. For the reconstruction the algorithm only uses information from within the image stack. Therefore the algorithm can be applied on the image data from every SPIM system without further hardware adaption. Also there is no need for multiple scans from different views to perform the reconstruction. The underlying model estimates the recorded image as a convolution between the distribution of fluorophores and a point spread function, which describes the blur due to scattering. Our algorithm performs a space-variant blind deconvolution on the image. To account for the increasing amount of scattering in deeper tissue, we introduce a new regularizer which models the increasing width of the point spread function in order to improve the image quality in the depth of the sample. Since the assumptions the algorithm is based on are not limited to SPIM images the algorithm should also be able to work on other imaging techniques which provide a 3D image volume
- …