3,543 research outputs found
Design study for the support of an inertial guidance test facility on gas lubricated compliant surface spherical bearings
Design study for support of inertial guidance test facility on gas lubricated compliant surface spherical bearing
Slovenian Grassland Society: Science, Profession and Practice
The Slovenian Grassland Society (SGS) was established in 1993. It has around 120 members. A half of members are active farmers, around 10% are scientists, the rest are employed in extension services or other agricultural enterprises (seed companies, administration bodies, etc.
Fine-tuning the functional properties of carbon nanotubes via the interconversion of encapsulated molecules
Tweaking the properties of carbon nanotubes is a prerequisite for their
practical applications. Here we demonstrate fine-tuning the electronic
properties of single-wall carbon nanotubes via filling with ferrocene
molecules. The evolution of the bonding and charge transfer within the tube is
demonstrated via chemical reaction of the ferrocene filler ending up as
secondary inner tube. The charge transfer nature is interpreted well within
density functional theory. This work gives the first direct observation of a
fine-tuned continuous amphoteric doping of single-wall carbon nanotubes
Gain and time resolution of 45 m thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of n/cm
Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in
charge multiplication layer providing a gain of typically 10 to 50. Due to the
combination of high signal-to-noise ratio and short rise time, thin LGADs
provide good time resolutions.
LGADs with an active thickness of about 45 m were produced at CNM
Barcelona. Their gains and time resolutions were studied in beam tests for two
different multiplication layer implantation doses, as well as before and after
irradiation with neutrons up to n/cm.
The gain showed the expected decrease at a fixed voltage for a lower initial
implantation dose, as well as for a higher fluence due to effective acceptor
removal in the multiplication layer. Time resolutions below 30 ps were obtained
at the highest applied voltages for both implantation doses before irradiation.
Also after an intermediate fluence of n/cm, similar
values were measured since a higher applicable reverse bias voltage could
recover most of the pre-irradiation gain. At n/cm, the
time resolution at the maximum applicable voltage of 620 V during the beam test
was measured to be 57 ps since the voltage stability was not good enough to
compensate for the gain layer loss. The time resolutions were found to follow
approximately a universal function of gain for all implantation doses and
fluences.Comment: 17 page
Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene
We have measured a strictly linear pi-plasmon dispersion along the axis of
individualized single wall carbon nanotubes, which is completely different from
plasmon dispersions of graphite or bundled single wall carbon nanotubes.
Comparative ab initio studies on graphene based systems allow us to reproduce
the different dispersions. This suggests that individualized nanotubes provide
viable experimental access to collective electronic excitations of graphene,
and it validates the use of graphene to understand electronic excitations of
carbon nanotubes. In particular, the calculations reveal that local field
effects (LFE) cause a mixing of electronic transitions, including the 'Dirac
cone', resulting in the observed linear dispersion
Finnish CMS-TOB cosmic rack
Peer reviewe
Charge collection properties of irradiated depleted CMOS pixel test structures
Edge-TCT and charge collection measurements with passive test structures made
in LFoundry 150 nm CMOS process on p-type substrate with initial resistivity of
over 3 kcm are presented. Measurements were made before and after
irradiation with reactor neutrons up to 210
n/cm. Two sets of devices were investigated: unthinned (700
m) with substrate biased through the implant on top and thinned (200
m) with processed and metallised back plane.
Depleted depth was estimated with Edge-TCT and collected charge was measured
with Sr source using an external amplifier with 25 ns shaping time.
Depleted depth at given bias voltage decreased with increasing neutron fluence
but it was still larger than 70 m at 250 V after the highest fluence.
After irradiation much higher collected charge was measured with thinned
detectors with processed back plane although the same depleted depth was
observed with Edge-TCT. Most probable value of collected charge of over 5000
electrons was measured also after irradiation to 210
n/cm. This is sufficient to ensure successful operation of
these detectors at the outer layer of the pixel detector in the ATLAS
experiment at the upgraded HL-LHC
Channeling of charge carrier plasmons in carbon nanotubes
Ab initio calculations of the loss function of potassium-intercalated and electron-loaded bundles of single-walled carbon nanotubes yield a channeled-charge-carrier plasmon without perpendicular dispersion. Experimentally, we probe the momentum-dependent loss function of thin bundles consisting of only a few potassium-intercalated single-walled carbon nanotubes by angle-resolved electron-energy-loss spectroscopy and confirm this intrinsic channeling. The charge-carrier-plasmon energy is via in situ intercalation and is tunable in the near-visible infrared-energy range from 0.85 to 1.15 eV
Optical Excitations and Field Enhancement in Short Graphene Nanoribbons
The optical excitations of elongated graphene nanoflakes of finite length are
investigated theoretically through quantum chemistry semi-empirical approaches.
The spectra and the resulting dipole fields are analyzed, accounting in full
atomistic details for quantum confinement effects, which are crucial in the
nanoscale regime. We find that the optical spectra of these nanostructures are
dominated at low energy by excitations with strong intensity, comprised of
characteristic coherent combinations of a few single-particle transitions with
comparable weight. They give rise to stationary collective oscillations of the
photoexcited carrier density extending throughout the flake, and to a strong
dipole and field enhancement. This behavior is robust with respect to width and
length variations, thus ensuring tunability in a large frequency range. The
implications for nanoantennas and other nanoplasmonic applications are
discussed for realistic geometries
- …