832 research outputs found

    The CP properties of the lightest Higgs boson with sbottom effects

    Get PDF
    In the framework of the recently proposed gluino-axion model, using the effective potential method and taking into account the top-stop as well as the bottom-sbottom effects, we discuss the CP--properties of the lightest Higgs boson, in particular its CP--odd composition, which can offer new opportunities at collider searches. It is found that although the CP-odd composition of the lightest Higgs increases slightly with the inclusion of the sbottom effects, it never exceeds %0.17 for all values of the renormalization scale Q ranging from top mass to TeV scaleComment: 24 pp, 12 eps fig

    How Finely Tuned is Supersymmetric Dark Matter?

    Get PDF
    We introduce a quantification of the question in the title: the logarithmic sensitivity of the relic neutralino density Omega-hsquared to variations in input parameters such as the supersymmetric mass scales m_0, m_1/2 and A_0, tan beta and the top and bottom quark masses. In generic domains of the CMSSM parameter space with a relic density in the preferred range 0.1 < Omega-hsquared < 0.3, the sensitivities to all these parameters are moderate, so an interesting amount of supersymetric dark matter is a natural and robust prediction. Within these domains, the accuracy in measuring the CMSSM and other input parameters at the LHC may enable the relic density to be predicted quite precisely. However, in the coannihilation regions, this might require more information on the supersymetric spectrum than the LHC is able to provide. There are also exceptional domains, such as those where direct-channel pole annihilation dominates, and in the `focus-point' region, where the logarithmic sensitivity to the input parameters is greatly increased, and it would be more difficult to predict Omega-hsquared accurately.Comment: 14 pages, 2 eps figure

    Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD

    Get PDF
    We consider Higgs boson production through gluon--gluon fusion in hadron collisions, when a veto is applied on the transverse momenta of the accompanying hard jets. We compute the QCD radiative corrections to this process at NLO and NNLO. The NLO calculation is complete. The NNLO calculation uses the recently evaluated NNLO soft and virtual QCD contributions to the inclusive cross section. We find that the jet veto reduces the impact of the NLO and NNLO contributions, the reduction being more sizeable at the LHC than at the Tevatron.Comment: 22 pages, 12 postscript figure

    Sneutrino Mass Measurements at e+e- Linear Colliders

    Get PDF
    It is generally accepted that experiments at an e+e- linear colliders will be able to extract the masses of the selectron as well as the associated sneutrinos with a precision of ~ 1% by determining the kinematic end points of the energy spectrum of daughter electrons produced in their two body decays to a lighter neutralino or chargino. Recently, it has been suggested that by studying the energy dependence of the cross section near the production threshold, this precision can be improved by an order of magnitude, assuming an integrated luminosity of 100 fb^-1. It is further suggested that these threshold scans also allow the masses of even the heavier second and third generation sleptons and sneutrinos to be determined to better than 0.5%. We re-examine the prospects for determining sneutrino masses. We find that the cross sections for the second and third generation sneutrinos are too small for a threshold scan to be useful. An additional complication arises because the cross section for sneutrino pair to decay into any visible final state(s) necessarily depends on an unknown branching fraction, so that the overall normalization in unknown. This reduces the precision with which the sneutrino mass can be extracted. We propose a different strategy to optimize the extraction of m(\tilde{\nu}_\mu) and m(\tilde{\nu}_\tau) via the energy dependence of the cross section. We find that even with an integrated luminosity of 500 fb^-1, these can be determined with a precision no better than several percent at the 90% CL. We also examine the measurement of m(\tilde{\nu}_e) and show that it can be extracted with a precision of about 0.5% (0.2%) with an integrated luminosity of 120 fb^-1 (500 fb^-1).Comment: RevTex, 46 pages, 15 eps figure

    Bounds on the Higgs-Boson Mass in the Presence of Non-Standard Interactions

    Get PDF
    The triviality and vacuum stability bounds on the Higgs-boson mass are revisited in the presence of new interactions parameterized in a model-independent way by an effective lagrangian. When the scale of new physics is below 50 TeV the triviality bound is unchanged but the stability lower bound is increased by 40-60 GeV. Should the Higgs-boson mass be close to its current lower experimental limit, this leads to the possibility of new physics at the scale of a few TeV, even for modest values of the effective lagrangian parameters.Comment: 5 pages, 2 figures, RevTex, submitted to PR

    Higgs particles

    Get PDF
    Report of the Higgs Working Group to appear in the Proceedings of the Workshop "Physics with \ee Linear Colliders", Annecy-Gran Sasso-Hamburg, Feb. 4 - Sept. 1, 1995, P.M. Zerwas (editor)

    Distribution of Introns in Fungal Histone Genes

    Get PDF
    Saccharomycotina and Taphrinomycotina lack intron in their histone genes, except for an intron in one of histone H4 genes of Yarrowia lipolytica. On the other hand, Basidiomycota and Perizomycotina have introns in their histone genes. We compared the distributions of 81, 47, 79, and 98 introns in the fungal histone H2A, H2B, H3, and H4 genes, respectively. Based on the multiple alignments of the amino acid sequences of histones, we identified 19, 13, 31, and 22 intron insertion sites in the histone H2A, H2B, H3, and H4 genes, respectively. Surprisingly only one hot spot of introns in the histone H2A gene is shared between Basidiomycota and Perizomycotina, suggesting that most of introns of Basidiomycota and Perizomycotina were acquired independently. Our findings suggest that the common ancestor of Ascomycota and Basidiomycota maybe had a few introns in the histone genes. In the course of fungal evolution, Saccharomycotina and Taphrinomycotina lost the histone introns; Basidiomycota and Perizomycotina acquired other introns independently. In addition, most of the introns have sequence similarity among introns of phylogenetically close species, strongly suggesting that horizontal intron transfer events between phylogenetically distant species have not occurred recently in the fungal histone genes

    Towards Open Access Publishing in High Energy Physics : Report of the SCOAP3 Working Party

    Get PDF
    This Report concerns the implementation of a process today supported by leading actors from the particle physics community, and worked through in detail by members of an international Working Party. The initiative offers an opportunity for the cost-effective dissemination of high-quality research articles in particle physics, enabling use of the new technologies of e-Science across the literature of High Energy physics
    • …
    corecore