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HIGGS PARTICLES

Introduction and Summary

A. Djouadi1,2 and P.M. Zerwas1

1 Deutsches Elektronen–Synchrotron DESY, D-22603 Hamburg, FRG.

2 Institut für Theoretische Physik, Universität Karlsruhe, D-76128 Karlsruhe, FRG.

The search for scalar Higgs particles and the exploration of the mechanism which
breaks the electroweak symmetry, will be one of the major tasks at future high–energy
e+e− colliders. In previous studies it has been shown that e+e− linear colliders operating
in the energy range

√
s ∼ 300 to 500 GeV with a luminosity of

∫ L ∼ 20 fb−1 are ideal
machines to search for light Higgs particles.

In the Standard Model (SM) the Higgs mass range MH <∼ 200 GeV is easy to cover at
these energies. This intermediate Higgs mass range is one of the theoretically most favored
ranges, allowing the particles to remain weakly interacting up to the GUT scale Λ ∼ 1016

GeV [a prerequisite for the perturbative renormalization of the electroweak mixing angle
from the GUT symmetry value 3/8 down to the experimentally observed value at low
energies]. The search of intermediate-mass Higgs bosons can be carried out in three
different channels: the Higgs–strahlung process e+e− → ZH and the fusion mechanisms
WW/ZZ → H . The cross sections are large and the properties of the Higgs boson, in
particular spin–parity quantum numbers and couplings to gauge bosons and fermions, can
be thoroughly investigated, allowing for crucial tests of the Higgs mechanism.

In the Minimal Supersymmetric Standard Model (MSSM) the Higgs sector is extended
to three neutral scalar and pseudoscalar particles h/H, A and a pair of charged particles
H±. The lightest Higgs boson h has a mass Mh <∼ 140 GeV and can be detected in the
entire MSSM parameter space either in the Higgs–strahlung process, e+e− → hZ, or by
the complementary mechanism of associated production with the pseudoscalar particle,
e+e− → hA. Moreover, there is a substantial area in the MSSM parameter space where
the heavy Higgs bosons can be also found; for a total energy of 500 GeV this is possible
if the H,A and H± masses are less than 230 GeV. Similar to the SM, various properties
of these Higgs bosons can be investigated.

Higher energies are required to sweep the entire mass range of the SM Higgs particle,
MH <∼ 1 TeV. The high energies will also be needed to produce and to study the heavy
scalar particles in extensions of the SM, such as the MSSM, if their masses are larger
than ∼ 250 GeV. Masses of the heavy Higgs bosons in this range are suggested by grand
unified supersymmetric theories. In e+e− collisions, these experiments can be performed
in the second phase of the colliders with a c.m. energy up to 1.5 to 2 TeV. In this report,
we analyze the potential of a 1.5 TeV e+e− linear collider, with an integrated luminosity
of
∫ L ∼ 200 fb−1 per annum to compensate for the drop of the cross sections at high
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energies. We will study the heavy Higgs particles in the Standard Model, in the minimal
supersymmetric extension and in other more speculative scenarios.

In the Standard Model, the main production mechanisms of Higgs particles, e+e− →
HZ and e+e− → νν̄H/e+e−H , will be discussed and the cross sections, including the
interference between the Higgs–strahlung and the fusion processes, will be given [2]. The
double Higgs production process, in which the trilinear Higgs coupling can be determined
[therefore leading to the first non–trivial test of the Higgs potential], will be discussed
in Ref.[3]. Finally, possible effects of New Physics beyond the SM on production cross
sections and angular distributions of Higgs bosons, will be summarized in Ref.[4]. Conse-
quences of a model in which the Higgs boson interacts strongly with scalar singlet fields
in a hidden sector, are described in Ref.[5].

Subsequently, we will investigate the properties of the heavy Higgs particles in super-
symmetric extensions of the SM. We will restrict ourselves first to the minimal extension
which is highly constrained, parameterized by only two free parameters at the tree–level:
a Higgs mass parameter [generally the mass the pseudoscalar Higgs boson MA] and the
ratio of the vacuum expectation values of the two doublet fields responsible for the symme-
try breaking, tgβ, which in grand unified supersymmetric models with Yukawa coupling
unification is forced to be either small, tgβ ∼ 1.5, or large, tgβ ∼ 50.

The various decay modes of the heavy CP–even Higgs boson H , the pseudoscalar
boson A and the charged Higgs particles H± will be analyzed in Ref.[6], in particular the
decays into supersymmetric particles, charginos, neutralinos, squarks and sleptons. The
production of the heavy Higgs particles, primarily through the channels e+e− → HA and
H+H−, will be also discussed in Ref.[6] and the complete one–loop electroweak radiative
corrections of the cross sections will be summarized [7,8]. We will finally discuss the
multiple production of the SM and the light MSSM Higgs bosons in Refs.[9,10]. Some of
these processes will allow us to determine the fundamental Higgs trilinear couplings.

A brief discussion of the Higgs sector in the next–to–minimal supersymmetric exten-
sion of the Standard Model, Ref.[11], concludes this report.
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Higgs-strahlung and Vector Boson Fusion

in e+e− Collisions

W. Kilian, M. Krämer, and P.M. Zerwas

Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg/FRG

Abstract

Higgs-strahlung e+e− → ZH and WW (ZZ) fusion e+e− → ν̄eνeH (e+e−H) are the
most important mechanisms for the production of Higgs bosons at future e+e− linear
colliders. We have calculated the cross sections and energy/angular distributions of
the Higgs boson for these production mechanisms. When the Z boson decays into
(electron-)neutrinos or e+e−, the two production amplitudes interfere. In the cross-
over region between the two mechanisms the interference term is positive (negative)
for ν̄eνe (e+e−) decays, respectively, thus enhancing (reducing) the production rate.

The analysis of the mechanism which breaks the electroweak gauge symmetry SU(2)L×
U(1)Y down to U(1)EM, is one of the key problems in particle physics. If the gauge
fields involved remain weakly interacting up to high energies – a prerequisite for the
(perturbative) renormalization of sin2 θW from the symmetry value 3/8 of grand-unified
theories down to a value near 0.2 at low energies – fundamental scalar Higgs bosons [1]
must exist which damp the rise of the scattering amplitudes of massive gauge particles
at high energies. In the Standard Model (SM) an isoscalar doublet field is introduced
to accomodate the electroweak data, leading to the prediction of a single Higgs boson.
Supersymmetric extensions of the Standard Model expand the scalar sector to a spectrum
of Higgs particles [2]. The Higgs particles have been searched for, unsuccessfully so far,
at LEP1, setting a lower limit on the SM Higgs mass of mH > 65.2 GeV [3]. The search
for these particles and, if found, the exploration of their profile, will continue at LEP2 [2],
the LHC [5], and future e+e− linear colliders [3].

Figure 1: Higgs-strahlung and vector boson fusion of (CP–even) Higgs bosons in e+e−

collisions.

In this note (see also [7]) we will focus on the production of scalar Higgs bosons in e+e−

collisions. The main production mechanisms for these particles are Higgs-strahlung [1]
and WW (ZZ) fusion [9–11] [supplemented in supersymmetric theories by associated
scalar/pseudoscalar Higgs pair production]. In particular, we will present a comprehensive
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analysis of the interplay between the production mechanisms1 (Fig.1)

Higgs-strahlung: e+e− → ZH → ν̄νH (e+e−H)

WW fusion : e+e− → ν̄eνeH

ZZ fusion : e+e− → e+e−H

(1)

For ν̄eνe and e+e− decays of the Z bosons, the two production amplitudes interfere.
It turns out that the interference term is positive for ν̄eνe and negative for e+e− decays,
respectively, in the cross-over region between the two mechanisms. The interference effect
had been noticed earlier [9,13]; however, we improve on these calculations by deriving
analytic results for the energy and polar angular distribution of the Higgs particle (EH , θ)
in the final states of e+e− → H + neutrinos and e+e− → He+e−. This representation can
comfortably serve as input for Monte Carlo generators like PYTHIA/JETSET [14] and
HZHA [15] which include the leading QED bremsstrahlung corrections and the important
background processes.

Total cross sections. The cross section for the Higgs-strahlung process can be written
in the following compact form:

σ(e+e− → ZH) =
G2

Fm
4
Z

96πs

(

v2
e + a2

e

)

λ
1

2
λ+ 12m2

Z/s

(1 −m2
Z/s)

2
(2)

where
√
s is the center-of-mass energy, and ae = −1, ve = −1 + 4 sin2 θW are the Z

charges of the electron; λ = (1 − (mH +mZ)2/s) (1 − (mH −mZ)2/s) is the usual two-
particle phase space function. So long as the non-zero width of the Z boson2 is not taken
into account, the cross section rises steeply at threshold ∼ (s − (mH + mZ)2)1/2. After
reaching a maximum [about 25 GeV above threshold in the LEP2 energy range], the cross
section falls off at high energies, according to the scaling law ∼ g4

W/s asymptotically.
Thus, Higgs-strahlung is the dominant production process for moderate values of the
energy. The cross section (2) for Higgs-strahlung is reduced by a factor 3 × BRν = 20%
if the final state of Z decays is restricted to neutrino pairs.

The total cross section for the WW (ZZ) fusion of Higgs particles can be cast into a
similarly compact form3 [17]:

σ =
G3

Fm
4
V

64
√

2π3

∫ 1

xH

dx
∫ 1

x

dy

[1 + (y − x)/xV ]2

[

(v2 + a2)2f(x, y) + 4v2a2g(x, y)
]

(3)

1 We will concentrate first on the Standard Model (SM); the extension to the Minimal Supersymmetric
Standard Model (MSSM) is trivial as will be demonstrated in the last section of this note.

2The results presented in this note are insensitive to non-zero width effects of the Higgs boson [16].
For SM Higgs masses below 100 GeV, ΓH is at least three orders of magnitude smaller than ΓZ ; for larger
Higgs masses, mH can be reinterpreted as the effective invariant mass of the Higgs decay products.

3The variable x is the invariant mass squared of νe plus H , (x− y) the 4-momentum transfer squared
from e+ to ν̄e (all momenta in units of the total energy).
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where V denotes either W or Z, the charges are v = a =
√

2 (v = ve and a = ae) for
WW (ZZ) fusion, respectively, and

f(x, y) =

(

2x

y3
− 1 + 2x

y2
+

2 + x

2y
− 1

2

)

[

z

1 + z
− log(1 + z)

]

+
x

y3

z2(1 − y)

1 + z

g(x, y) =

(

− x

y2
+

2 + x

2y
− 1

2

)

[

z

1 + z
− log(1 + z)

]

with xH = m2
H/s, xV = m2

V /s and z = y(x−xH)/(xxV ). For moderate Higgs masses and
energies, the cross section, being O(g6

W ), is suppressed with respect to Higgs-strahlung
by the additional electroweak coupling. The smaller value of the Z-electron coupling
suppresses the ZZ fusion process by an additional order of magnitude compared to WW
fusion. At high energies, the WW fusion process becomes leading, nevertheless, since the
size of the cross section is determined by the W mass, in contrast to the scale-invariant
Higgs-strahlung process,

σ(e+e− → ν̄eνeH) ≈ G3
Fm

4
W

4
√

2 π3

[(

1 +
m2

H

s

)

log
s

m2
H

− 2

(

1 − m2
H

s

)]

→ G3
Fm

4
W

4
√

2 π3
log

s

m2
H

(4)

The cross section rises logarithmically at high energies, as to be anticipated for this t-
channel exchange process.

Differential cross section and interference for WW fusion. The compact form (3)
for the fusion cross section cannot be maintained once the interference term between vector
boson fusion and Higgs-strahlung is included. Moreover, since in the case of WW fusion
the integration variables x and y do not correspond to observable quantities, the formula is
useful only for calculating the total cross section without experimental cuts. Nevertheless,
similarly compact expressions can be derived in this general case by choosing the energy
EH and the polar angle θ of the Higgs particle as the basic variables in the e+e− c.m.
frame. The overall cross section that will be observed experimentally for the process

e+e− → H + ν̄ν

receives contributions 3 × GS from Higgs-strahlung with Z decays into three types of
neutrinos, GW from WW fusion, and GI from the interference term between fusion and
Higgs-strahlung for ν̄eνe final states. We find4 for energies

√
s above the Z resonance:

dσ(Hν̄ν)

dEH d cos θ
=
G3

Fm
8
Zp√

2π3s
(3GS + GI + GW ) (5)

4The analytic result for GW had first been obtained in Ref.[11].
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Figure 2: Total cross sections for the processes e+e− → Hν̄ν and e+e− → He+e− as
a function of the Higgs mass. The cross sections are broken down to the three compo-
nents Higgs-strahlung, vector boson fusion, and the interference term. “thr” denotes the
maximum Higgs mass for on-shell ZH production, “tot” is the total cross section. In
e+e− → Hν̄ν (above) the interference term is negative for small Higgs masses, for large
Higgs masses positive. In e+e− → He+e− (below), the interference term is of opposite
sign.
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with

GS =
v2

e + a2
e

96

ssν + s1s2

(s−m2
Z)

2
[(sν −m2

Z)2 +m2
ZΓ2

Z ]
(6)

GI =
(ve + ae) cos4 θW

8

sν −m2
Z

(s−m2
Z) [(sν −m2

Z)2 +m2
ZΓ2

Z ]

×
[

2 − (h1 + 1) log
h1 + 1

h1 − 1
− (h2 + 1) log

h2 + 1

h2 − 1
+ (h1 + 1)(h2 + 1)

L√
r

]

(7)

GW =
cos8 θW

s1s2r

{

(h1 + 1)(h2 + 1)

[

2

h2
1 − 1

+
2

h2
2 − 1

− 6s2
χ

r
+
(

3t1t2
r

− cχ

) L√
r

]

−
[

2t1
h2 − 1

+
2t2

h1 − 1
+
(

t1 + t2 + s2
χ

) L√
r

]}

(8)

The cross section is written explicitly in terms of the Higgs momentum p =
√

E2
H −m2

H ,

and the energy ǫν =
√
s − EH and invariant mass squared sν = ǫ2ν − p2 of the neutrino

pair. In addition, the following abbreviations have been adopted from Ref.[11],

s1,2 =
√
s(ǫν ± p cos θ)

h1,2 = 1 + 2m2
W/s1,2

cχ = 1 − 2ssν/(s1s2)

s2
χ = 1 − c2χ

t1,2 = h1,2 + cχh2,1

r = h2
1 + h2

2 + 2cχh1h2 − s2
χ

L = log
h1h2 + cχ +

√
r

h1h2 + cχ −√
r

To derive the total cross section σ(e+e− → Hν̄ν), the differential cross section must
be integrated over the region

− 1 < cos θ < 1 and mH < EH <

√
s

2

(

1 +
m2

H

s

)

(9)

Differential cross section and interference for ZZ fusion. Similarly, the overall
cross section for the process

e+e− → H + e+e−

receives contributions GS from Higgs-strahlung with Z decays into electron-positron pairs,
GZ from ZZ fusion, and GI from the interference term between fusion and Higgs-strahlung:

dσ(He+e−)

dEH d cos θ
=
G3

Fm
8
Zp√

2 π3s
(GS + GI + GZ1 + GZ2) (10)

with

GS =
(v2

e + a2
e)

2

192

sse + s1s2

(s−m2
Z)

2
[(se −m2

Z)2 +m2
ZΓ2

Z ]
(11)

GI =
(v2

e + a2
e)

2
+ 4v2

ea
2
e

64

se −m2
Z

(s−m2
Z) [(se −m2

Z)2 +m2
ZΓ2

Z ]
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×
[

2 − (h1 + 1) log
h1 + 1

h1 − 1
− (h2 + 1) log

h2 + 1

h2 − 1
+ (h1 + 1)(h2 + 1)

L√
r

]

(12)

GZ1 =
(v2

e + a2
e)

2
+ 4v2

ea
2
e

32 s1s2r

{

(h1 + 1)(h2 + 1)

[

2

h2
1 − 1

+
2

h2
2 − 1

− 6s2
χ

r
+
(

3t1t2
r

− cχ

) L√
r

]

−
[

2t1
h2 − 1

+
2t2

h1 − 1
+
(

t1 + t2 + s2
χ

) L√
r

]}

(13)

GZ2 =
(v2

e − a2
e)

2

16 s1s2r
(1 − cχ)

[

2

h2
1 − 1

+
2

h2
2 − 1

− 6s2
χ

r
+
(

3t1t2
r

− cχ

) L√
r

]

(14)

where the same abbreviations as in the formulae following Eq.(5), with the appropriate
replacements ν → e and W → Z, have been used.

To interpret the results, we display the three components of the total cross sections
σ(e+e− → Hν̄ν) and σ(e+e− → He+e−) in Fig.2 for the linear collider energy

√
s = 500

GeV in the cross-over region.5

While the energy distribution of the Higgs particle peaks at EH ∼ (s+m2
H −m2

Z)/2
√
s

for Higgs-strahlung, it is nearly flat for WW fusion (Fig.3, left). Only with rising total
energy the lower part of the Higgs spectrum becomes more pronounced. The angular dis-
tribution for Higgs-strahlung is almost isotropic at threshold while the standard sin2 θ law
is approached, in accordance with the equivalence principle, at asymptotic energies (Fig.3,
right). The angular distribution peaks, by contrast, in the WW fusion process at θ → 0
and π for high energies as expected for t-channel exchange processes.

Polarized beams. At linear colliders the incoming electron and positron beams can be
polarized longitudinally. Higgs-strahlung and WW fusion both require opposite helicities
of the electrons and positrons. If σU,LR,RL denote the cross sections in e+e− → Hν̄ν for
unpolarized electrons/positrons, left-handed electrons/right-handed positrons, and right-
handed electrons/left-handed positrons, respectively, we can easily derive, in the notation
of Eq.(5):

σU ∝ 3GS + GI + GW (15)

σLR ∝ 6GS + 4GI + 4GW (16)

σRL ∝ 6GS (17)

The cross section for WW fusion of Higgs particles increases by a factor four, compared
with unpolarized beams, if left-handed electrons and right-handed positrons are used. By
using right-handed electrons, the WW fusion mechanism is switched off. [The interference
term cannot be separated from the WW fusion cross section.]

5Note that Higgs-strahlung dominates WW fusion at 500 GeV for moderate Higgs masses only if the
total ZH cross section is considered.
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For the process e+e− → He+e−, the pattern is slightly more complicated:

σU ∝ GS + GI + GZ1 + GZ2 (18)

σLR ∝ 2
(ve + ae)

2

(v2
e + a2

e)
GS + 2

(ve + ae)
4

(v2
e + a2

e)
2 + 4v2

ea
2
e

(GI + GZ1) (19)

σRL ∝ 2
(ve − ae)

2

(v2
e + a2

e)
GS + 2

(ve − ae)
4

(v2
e + a2

e)
2 + 4v2

ea
2
e

(GI + GZ1) (20)

σLL = σRR ∝ 2GZ2. (21)

However, since ve ≪ ae, the difference between σRL and σLR is suppressed.

Supersymmetric CP-even Higgs bosons. It is trivial to transfer all these results
from the Standard Model to the Minimal Supersymmetric Standard Model (MSSM). Since
the couplings to Z/W gauge bosons in the MSSM are shared [20] by the CP-even light
and heavy scalar Higgs bosons, h and H , respectively, only the overall normalization of
the cross sections is modified with respect to the Standard Model:

σ(h)MSSM = sin2(β − α) × σ(H)SM (22)

σ(H)MSSM = cos2(β − α) × σ(H)SM (23)

Higgs-strahlung, vector boson fusion, and the interference term are affected in the same
way. [The angle α is the mixing angle in the CP-even Higgs sector while the mixing angle
β is determined by the ratio of the vacuum expectation values of the two neutral Higgs
fields in the MSSM. A recent discussion of the size of the coefficients sin2 / cos2(β − α)
may be found in Ref.[21].]
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Figure 3: Energy distribution (left) and angular distribution (right) of the Higgs bosons
for the three components of the cross section [ Hs = Higgs-strahlung; WW = fusion; intf
= interference term]. The individual curves are normalized to the total cross section. The
Hs peak extends up to maximal values of 0.22 GeV−1. The total cross section is 69.4 fb.
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1 Associated Higgs Pair Production

The interest in double Higgs production is the probing of the triple Higgs self coupling. It
has been considered in e+e− sometime ago[1]. The most efficient means for double Higgs

production is e+e− → νeν̄eHH (see fig. 1). Double Higgs bremstrahlung (e+e− → ZHH)
is only competing at relatively low energies where the event sample is too low to be useful.

The equivalent loop-induced double Higgs production in e+e− has been found to be much
too small[4] and is not sensitive to the H3 coupling. However, the γγ mode can form a

JZ = 0 state and therefore γγ → HH is a candidate for testing the H3 coupling[3]. It
has been pointed out recently that another interesting process is γγ → W+W−HH [2]

that is expected to compete with double Higgs production in e+e− . The reason is that
in the TeV range, W fusion processes are very much enhanced. The sub-process involved

is W+W− → HH , where the dominant helicity amplitude is:

M̃LL =
g2

2

{

1

βHβ3
W

(

1

x− x0
− 1

x+ x0

)

(r
M2

H

s
+ β2

H + β4
W )

+
1

β2
W

(2 − β2
W − r) +

3h3r

4

(

1 + β2
W

1 −M2
H/s

)}

→ g2

4
r(3h3 − 2) + . . . (1)

Where h3 is the anomaly in the triple Higgs coupling g, i.e. g = h3gsm where gsm is
the minimal standard model coupling of H3. We also denote βW,H =

√

1 − 4M2
W,H/s,

r = M2
H/M

2
W , x0 = (1 + β2

H)/2βWβH , x = cos θ.
Figure 2 shows that at 2TeV, the cross sections drops precipitously with increasing

Higgs mass. One can also notice that in γγ → W+W−HH the external outgoing W
(mainly transverse) are produced at small angle and take a large amount of energy. For

the fusion diagrams of this process, the internal W triggers W+W− → HH , which
implies that these diagrams dominate for a heavy Higgs. When convoluting with the

much advertised photon spectra of[5] and for MH = 100GeV the cross section of γγ →
W+W−HH drops by about at least a factor of 2 compared with the result without

convolution. For W -fusion-like processes, the internal W ’s are almost on shell and one
may wonder if some structure functions could reproduce the exact results.

1 URA 14-36 du CNRS, associée à l’E.N.S de Lyon et à l’Université de Savoie.
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Figure 1: Comparison of cross sections for double Higgs production at e+e− and γγ reactions

for a light Higgs MH = 100GeV .

Figure 2: Higgs mass dependence of the γγ → W+W−HH cross section at 2TeV. The contri-

bution of the diagrams involving the triple Higgs vertex (Signal) and the rest (Background) is

shown separetely. Note the strong interference that occurs in the SM especially for large MH .
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Figure 3: Comparing the result of the WL effective approximation (σEWA) to the exact result

σexact for e+e− → νeν̄eHH (left) and γγ → W+W−HH (right) for a light Higgs and a heavy

Higgs. Also shown is the asymptotic analytical cross section σEWA
∞ . σTT is the cross section

with both outgoing W ’s transverse.

2 The structure function approach

There have been numerous derivations of the distribution (or structure function) of the W

inside the light fermions (quarks and electrons) [6]. For the effective W approximation,
the most interesting aspect concerns the WL content, which has been used to investigate

manifestations of models of symmetry breaking and Higgs production. The WL distribu-
tion inside the photon has only very recently been studied [7]. For the case of the heavy

Higgs the approximation is excellent, already at 2TeV. However, for a light Higgs, the
approximation is not good and reproduce only the energy behaviour. If one makes the

further approximation that the hard process cross section is independent of the energy,
this additional “asymptotic” approximation only reproduces the energy behaviour as well

as the order of magnitude (even for a heavy Higgs, see figs. 3).

16



Figure 4: The distribution in the reconstructed angle θ⋆ for the signal, background and the

interference in the case of γγ → W+W−HH without convolution with photon spectra.

3 Identifying and measuring the Higgs triple vertex

There is a specific signature of the H3 coupling in all processes that we have studied. Once

we note that the two Higgses that originate from this vertex can be regarded as produced
by a scalar H⋆ then in the centre of mass system of the pair, the angular distribution of

the Higgses is flat. Therefore, we suggest to reconstruct the angle, θ⋆, measured in the

centre-of-mass of the pair, between the Higgs direction and the boost axis or the direction
of the beam. For the “signal”2 the distribution is flat, while the “background” is peaked

in the forward/backward direction (see fig. 4). We therefore consider the ratio R of events
that verify | cos(θ⋆)| < cos(θ⋆

0)
3, over the number of events outside this region. Assuming

a total integrated luminosity of 300fb−1, and a 50% efficiency for the reconstruction of
the double Higgs events one obtain ∼ 68 e+e− → νeν̄eHH events for MH = 100GeV .

Here the criterion for detection of an anomaly in h3 is a 50% deviation in the expected
number of events, provided one has at least 30 events. We conclude that with the total

2We call “signal” the part of the amplitude that include the H3 vertex. The rest is called “background”.
3 cos θ⋆

0 = 0.5 is taken in the following.
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Figure 5: Dependence of the ratio R on h3.

cross section one would only be able to claim New Physics if δh3 < −0.75 or δh3 > 2.
For MH = 400GeV , SM values will not lead to a measurement, however if |δh3| > 1 a

signal will be recorded (with more than 30 events) and would be a clear indication for an
anomalous h3 coupling. For MH = 100GeV where one has enough events for a SM value,

the ratio R is much more powerful in constraining the coupling. First the event sample
within | cos θ⋆| < 0.5 is about 7 out of 60 outside this region. Assuming that the ratio can

be measured at 20%, we find −.10 < |δh3| < .15 (see fig. 5) which means a precision of
about 10% on h3. For γγ → W+W−HH and considering the effective γγ luminosity, for

MH = 100GeV , one can hope to collect 15 events. In view of this number the criterion
for detection of non-standard values is 100% deviation in the number of events. However,

for a Higgs mass of 400GeV the effect of an anomalous H3 coupling are dramatic and, by

far, much more interesting than in e+e− . Requiring observation of at least 15 events for
MH = 400GeV (within the SM one expects only 3) useful constraints on the coupling

can be set: −.7 < δh3 < 0.5. There is thus a complementarity between the e+e− and
the γγ depending on the Higgs mass in probing the Higgs triple vertex. As for the ratio

R, taking MH = 100GeV it is unlikely that with the number of total WWHH events
at γγ one would be able to make such a measurement, nonetheless even if this ratio

were measured with the same precision as in e+e− one would not constrain the couplings
further than what is achieved in the classic e+e− mode. For MH > 600GeV , γγ → HH

is the only reaction where useful limits can be set. Thus, there is at a 2TeV collider a
very nice coverage of the h3 sensitivity by all three reactions.
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4 Conclusions

We have seen that a 2TeV e+e− collider with the realistic luminosities expected for this

machine one may hope to achieve a measurement of the tri-linear couplings at the level of
10% (for a light Higgs). The results are also encouraging in the sense that the e+e− and

the γγ modes can cover different ranges of the Higgs mass. We find that for a light
Higgs (up to 250GeV) the best limits on the H3 couplings come from e+e− → νeν̄eHH .

However, for heavier Higgses up to mass of 500GeV , the best channel is the associated
double Higgs production in γγ . For still heavier masses, the one-loop induced γγ → HH

is by far better. The variable R clearly helps in discriminating the triple Higgs vertex.

As a by-product we have verified the validity of the distribution function describing the
longitudinal W content of the photon. We should also insist on the complementarity of

the e+e− and the γγ modes of the linear collider for these studies.
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Anomalous Couplings in the Higgs-strahlung Process
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Abstract

The angular distributions in the Higgs-strahlung process e+e− → HZ → Hf̄f are
uniquely determined in the Standard Model. We study how these predictions are
modified if non-standard couplings are present in the ZZH vertex, as well as lepton-
boson contact terms. We restrict ourselves to the set of operators which are singlets
under standard SU3×SU2×U1 transformations, CP conserving, dimension 6, helicity
conserving, and custodial SU2 conserving.

The Higgs-strahlung process [1]

e+e− → HZ → Hf̄f (1)

together with theWW fusion process, are the most important mechanisms for the produc-

tion of Higgs bosons in e+e− collisions [2,3]. Since the ZZH vertex is uniquely determined
in the Standard Model (SM), the production cross section of the Higgs-strahlung process,

the angular distribution of the HZ final state as well as the fermion distribution in the Z
decays can be predicted if the mass of the Higgs boson is fixed [4]. These predictions may

be modified when deviations from the pointlike coupling are present, which can occur in
models with non-pointlike character of the Higgs boson itself or through interactions be-

yond the SM at high energy scales. Since the effective energy scale of the Higgs-strahlung
process is set by the c.m. energy

√
s, while the fusion processes are essentially low-energy

processes with an effective scale of the order MW , new interactions manifest themselves
more clearly in the total cross section and angular distributions for the Higgs-strahlung

process (see also [5]).

Operator basis. Deviations from the pointlike coupling can occur in models with non-

pointlike character of the Higgs boson itself or through interactions beyond the SM at
high energy scales. We need not specify the underlying theory but instead we will adopt

the usual assumption that these effects can globally be parameterized by introducing a
set of dimension-6 operators

L = LSM +
∑

i

αi

Λ2
Oi (2)

The coefficients are in general expected to be of the order 1/Λ2, where Λ denotes the energy

scale of the new interactions. However, if the underlying theory is weakly interacting, the

αi can be significantly smaller than unity, in particular for loop-induced operators. [It is
assumed a priori that the ratio of the available c.m. energy to Λ is small enough for the

expansion in powers of 1/Λ to be meaningful.]
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If we restrict ourselves to operators [6] which are singlets under SU3 × SU2 × U1

transformations of the SM gauge group, CP conserving, and conserving the custodial SU2

symmetry, the following bosonic operators are relevant for the Higgs-strahlung process:

O∂ϕ =
1

2
|∂µ(ϕ†ϕ)|2 (3)

OϕW =
1

2
ϕ† ~W 2

µνϕ (4)

OϕB =
1

2
ϕ†B2

µνϕ (5)

where the gauge fields W 3, B are given by the Z, γ fields. This set of operators is par-
ticularly interesting because it does not affect, at tree level, observables which do not

involve the Higgs particle explicitly. [It is understood that the fields and parameters
are (re-)normalized in the Lagrangian L in such a way that the particle masses and the

electromagnetic coupling retain their physical values.]
In addition, we consider the following helicity-conserving fermionic operators which

induce contact terms contributing to e+e− → ZH :

OL1 = (ϕ†iDµϕ)(ℓ̄Lγ
µℓL) + h.c. (6)

OL3 = (ϕ†τaiDµϕ)(ℓ̄Lτ
aγµℓL) + h.c. (7)

OR = (ϕ†iDµϕ)(ēRγ
µeR) + h.c. (8)

[ℓL and eR denote the left-handed lepton doublet and the right-handed singlet, respec-

tively. The vacuum expectation value of the Higgs field is given by 〈ϕ〉 = (0, v/
√

2)
with v = 246 GeV, and the covariant derivative acts on the Higgs doublet as Dµ =

∂µ − i
2
gτaW a

µ + i
2
g′Bµ.] Helicity-violating fermionic operators do not interfere with the

SM amplitude, so that their contribution to the cross section is suppressed by another

power of Λ2. The helicity-conserving fermionic operators modify the SM Zee couplings
and are therefore constrained by the measurements at LEP1; however, it is possible to

improve on the existing limits by measuring the Higgs-strahlung process at a high-energy
e+e− collider since the impact on this process increases with energy [7].

Figure 1: Anomalous ZZH/γZH couplings and e+e−ZH contact terms in the Higgs-
strahlung process.

The effective ZZH and the induced γZH interactions (Fig.1, left diagram) may be
written

LZZH = gZMZ

(

1 + a0

2
ZµZ

µH +
a1

4
ZµνZ

µνH
)

(9)
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LγZH = gZMZ
b1
2
ZµνA

µνH (10)

where gZ = MZ

√

4
√

2GF . Additional operators ZµZ
µν∂νH and ZµA

µν∂νH are redundant
in this basis: They may be eliminated in favor of the other operators and the contact terms

by applying the equations of motion. The remaining coefficients are given by

a0 = −1

2
α∂ϕ v

2/Λ2 (11)

a1 = 4g−2
Z

(

c2WαϕW + s2
WαϕB

)

/Λ2 (12)

b1 = 4g−2
Z cWsW (−αϕW + αϕB) /Λ2 (13)

where sW and cW are the sine and cosine of the weak mixing angle, respectively.
In the same way the eēHZ contact interactions (Fig.1, right diagram) can be defined

for left/right-handed electrons and right/left-handed positrons

LeeZH = gZMZ [cLēL /ZeLH + cRēR /ZeRH ] (14)

with

cL = −2g−1
Z (αL1 + αL3) /Λ

2 (15)

cR = −2g−1
Z αR/Λ

2 (16)

Some consequences of these operators for Higgs production in e+e− collisions have

been investigated in the past. Most recently, the effect of novel ZZH vertex operators
and ℓℓ̄ZH contact terms on the total cross sections for Higgs production has been studied

in Ref.[7]. The impact of vertex operators on angular distributions has been analyzed
in Refs.[8] and [9]. We expand on these analyses by studying the angular distributions

for the more general case where both novel vertex operators and contact interactions
are present. The analysis of angular distributions in the Higgs-strahlung process (1)

allows us to discriminate between various novel interactions. In fact, the entire set of
parameters a0, a1, b1 and cL, cR can be determined by measuring the polar and azimuthal

angular distributions as a function of the beam energy if the electron/positron beams
are unpolarized. As expected, the energy dependence of the polar angular distribution is

sufficient to provide a complete set of measurements if longitudinally polarized electron
beams are available1.

Total cross section and polar angular distribution. Denoting the polar angle

between the Z boson and the e+e− beam axis by θ, the differential cross section for the
process e+e−L,R → ZH may be written as

dσL,R

d cos θ
=
G2

FM
4
Z

96πs
(ve ± ae)

2 λ1/2

3
4
λ sin2 θ

(

1 + αL,R
)

+ 6
(

1 + βL,R
)

M2
Z/s

(1 −M2
Z/s)

2
(17)

1Since we can restrict ourselves to helicity-conserving couplings, as argued before, additional positron
polarization need not be required.

22



Figure 2: Polar and azimuthal angles in the Higgs-strahlung process. [The polar angle θ∗
is defined in the Z rest frame.]

and the integrated cross section

σ =
G2

FM
4
Z

96πs
(ve ± ae)

2 λ1/2
λ
(

1 + αL,R
)

+ 12
(

1 + βL,R
)

M2
Z/s

(1 −M2
Z/s)

2
(18)

The Z charges of the electron are defined as usual by ae = −1 and ve = −1+4s2
W . s is the

c.m. energy squared, and λ the two-particle phase space coefficient λ = [1 − (mH +mZ)2/s]

× [1 − (mH −mZ)2/s]. The coefficients α(s)L,R and β(s)L,R can easily be determined for
the interactions in Eqs.(9) and (14):

α(s)L,R = 2a0 + (s−M2
Z)

8cWsW

ve ± ae
cL,R (19)

β(s)L,R = α(s)L,R + 2γ
√
sMZ

[

a1 +
4cWsW

ve ± ae

(

1 − M2
Z

s

)

b1

]

(20)

where the boost of the Z boson is given by γ = (s+M2
Z −M2

H)/2MZ

√
s.

The modification of the cross section by the new interaction terms has a simple struc-
ture. The coefficient a0 just renormalizes the SM cross section. By contrast, the contact

interactions grow with s. [The ratio s/Λ2 is assumed to be small enough for the restric-
tion to dimension-6 operators to be meaningful.] The operators OϕW , OϕB affect the

coefficient in the cross section which is independent of θ. They damp the fall-off of this
term, changing the 1/s2 to a 1/s behavior; however, these contributions remain sublead-

ing since they are associated with transversely polarized Z bosons which are suppressed

at high energies compared with the longitudinal components. To illustrate the size of the
modifications α(s)L,R and β(s)L,R, we have depicted these functions in Fig.3(a) for the

special choice αi = 1.
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Azimuthal distributions. The azimuthal angle φ∗ of the fermion f is defined as the

angle between the [e−, Z] production plane and the [Z, f ] decay plane (Fig.2). It corre-
sponds to the azimuthal angle of f in the Z rest frame with respect to the [e−, Z] plane.

On general grounds, the φ∗ distribution must be a linear function of cosφ∗, cos 2φ∗, and

sin φ∗, sin 2φ∗, measuring the helicity components of the decaying spin-1 Z state. The
coefficients of the sine terms vanish for CP invariant theories. The cos φ∗ and cos 2φ∗

terms correspond to P-odd and P-even combinations of the fermion currents. The general
azimuthal distributions are quite involved [4,8,9]. We therefore restrict ourselves to the

simplified case in which all polar angles are integrated out, i.e., the polar angle θ of the
Z boson in the laboratory frame and the polar angle θ∗ of f in the Z rest frame. In this

way we find for the azimuthal φ∗ distribution:

dσL,R

dφ∗

∼ 1 ∓ 9π2

32

2 vfaf

v2
f + a2

f

γ

γ2 + 2

(

1 + fL,R
1

)

cosφ∗ +
1

2(γ2 + 2)

(

1 + fL,R
2

)

cos 2φ∗ (21)

with

f1(s)
L,R = MZ

√
s

(γ2 − 1)(γ2 − 2)

γ(γ2 + 2)

[

a1 +
4sW cW
ve ± ae

(

1 − M2
Z

s

)

b1

]

(22)

f2(s)
L,R = 2MZ

√
s
γ(γ2 − 1)

γ2 + 2

[

a1 +
4sW cW
ve ± ae

(

1 − M2
Z

s

)

b1

]

(23)

The cross section flattens with increasing c.m. energy in the Standard Model, i.e. the
coefficients of cosφ∗ and cos 2φ∗ decrease asymptotically proportional to 1/

√
s and 1/s,

respectively. The anomalous contributions modify this behavior: The cosφ∗ term receives
contributions which increase proportional to

√
s with respect to the total cross section,

while the cos 2φ∗ term receive contributions from the transversal couplings that approaches
a constant value asymptotically. The size of the new terms in fL,R

1,2 is shown in Fig.3(b)

as a function of the energy. [The special choice αi = 1 we have adopted for illustration,
implies fL

1,2 = fR
1,2.]

High-energy limit. It is instructive to study the high-energy behavior of the coeffi-
cients in the limit M2

Z ≪ s≪ Λ2. In this case we obtain the simplified relations:

α(s)L,R ≃ ∓ s · 8sW cW cL,R + O(ve) (24)

β(s)L,R ≃ α(s)L,R + s (a1 ∓ 4sW cW b1) + O(ve) (25)

and

f1(s)
L,R ≃ s

2
(a1 ∓ 4sW cW b1) + O(ve) (26)

f2(s)
L,R ≃ s (a1 ∓ 4sW cW b1) + O(ve) (27)

Terms which are proportional to ve = −1+4s2
W are suppressed by an order of magnitude.

If longitudinally polarized electrons are available, the asymptotic value of the coefficients
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a1, b1, cL and cR can be determined by measuring the polar angular distribution with-

out varying the beam energy. The analysis of the azimuthal φ∗ distribution provides
two additional independent measurements of the coefficients a1 and b1. On the other

hand, the set of measurements remains incomplete for fixed energy if only unpolarized

electron/positron beams are used at high energies; in this case the coefficients cannot
be disentangled completely without varying the beam energy within the preasymptotic

region.
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Figure 3: Coefficients of the angular distributions as a function of the beam energy.
Parameters are described in the text; in particular, αi = 1 has ben chosen in the effective
Lagrangian Eq.(2). [The L,R coefficients of the azimuthal distribution coincide for the
special choice αi = 1.]
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Abstract

We investigate the influence of massless scalar singlets on Higgs signals at the
NLC. An exclusion bound is presented which restricts large regions of the parameter
space but on the other hand implies that for strong interactions between the Higgs
boson and the singlet fields of the hidden sector, detection of such a non standard
Higgs signal can become impossible.

1. Introduction

Understanding of the electroweak symmetry breaking mechanism is one of the main tasks

in particle physics. The determination of its nature would be a break-through in our
knowledge about matter. So it is important to think about alternatives to the Standard

Model Higgs sector. Various such extensions are available. Maybe the best motivated one
is the supersymmetrized Standard Model with its important phenomenological implication

of a light Higgs boson and which allows a consistent frame for grand unified theories.
Another well understood extension – though in its minimal version disfavoured by the

precision experiments at LEP – are technicolor theories. Though these theories avoid

fundamental scalars, a rich bosonic spectrum of techniquark condensates may exist. Thus
in both theories, as long as they do not occur in their minimal form, light bosonic matter

could be present modifying the standard Higgs signals we are looking for at present and
future colliders. If such bosons appear as singlets under the Standard Model gauge group,

they do not feel the color or electroweak forces, but they can couple to the Higgs particle.
As a consequence radiative corrections to weak processes are not sensitive to the presence

of singlets in the theory, because no Feynman graphs containing singlets appear at the
one–loop level. Since effects at the two–loop level are below the experimental precision,

the presence of a singlet sector is not ruled out by any of the LEP1 precision data. The
only connection to such a hidden sector is a possible Higgs–singlet coupling, leading to a

nonstandard invisible Higgs decay. The invisible decay of the Higgs boson with a narrow
width leads to relatively sharp missing energy signals, well known from discussions on

Majoron models [2]. However a strongly coupled hidden sector could lead to fast Higgs
decay and thereby to wide resonances. This would disturb the signal to background ratio

if necessary cuts are imposed.
To check the influence of a hidden sector we will study the coupling of a Higgs boson

to an O(N) symmetric set of scalars, which is one of the simplest possibilities, introducing

only a few extra parameters in the theory. The effect of the extra scalars is practically the
presence of a possibly large invisible decay width of the Higgs particle. When the coupling

is large enough the Higgs resonance can become wide even for a light Higgs boson. It was
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shown earlier that there will be a range of parameters, where such a Higgs boson can be

seen neither at LEP nor at the LHC [1,2].
In the next section we will introduce the model together with its theoretical constraints

and in the last section we will discuss exclusion limits at the NLC.

2. The model

The scalar sector of the model consists of the usual Higgs sector coupled to a real N–
component vector ~ϕ of scalar fields, denoted by phions in the following. The Lagrangian

density is given by,

L = −∂µφ
+∂µφ−λ(φ+φ−v2/2)2−1/2 ∂µ~ϕ∂

µ~ϕ−1/2m2 ~ϕ2−κ/(8N) (~ϕ2)2−ω/(2
√
N) ~ϕ2 φ+φ

where φ is the standard Higgs doublet. Couplings to fermions and vector bosons are the

same as in the Standard Model. The ordinary Higgs field acquires the vacuum expectation

value v/
√

2. For positive ω the ~ϕ–field acquires no vacuum expectation value. After
spontaneous symmetry breaking one is left with the ordinary Higgs boson, coupled to the

phions into which it decays. Also the phions receive an induced mass from the spontaneous
symmetry breaking which is suppressed by a factor 1/

√
N . If the factor N is taken to be

large, the model can be analysed with 1/N–expansion techniques. By taking this limit
the phion mass remains small, but as there are many phions, the decay width of the Higgs

boson can become large. Therefore the main effect of the presence of the phions is to give
a large invisible decay rate to the Higgs boson. The invisible decay width is given by

ΓH =
ω2v2

32πMH
=
ω2(sin θW cos θWMZ)2

32π2αemMH
.

The Higgs width is compared with the width in the Standard Model for various choices of
the coupling ω in Fig. 1. The model is different from Majoron models [2], since the width

is not necessarily small. The model is similar to the technicolor–like model of Ref. [4].
Consistency of the model requires two conditions. One condition is the absence of a

Landau pole below a certain scale Λ. The other follows from the stability of the vacuum
up to a certain scale. An example of such limits is given in Fig. 2, where κ = 0 was taken

at the scale 2mZ , which allows for the widest parameter range. The regions of validity
up to a given scale Λ are sandwiched between the lower–left and the upper–right contour

lines in the figure. The first stem from instability of the vacuum, the second from the
presence of a Landau pole at that scale.

To search for the Higgs boson there are basically two channels, one is the standard
decay, which is reduced in branching ratio due to the decay into phions. The other is the

invisible decay, which rapidly becomes dominant, eventually making the Higgs resonance
wide (see Fig. 1). In order to give the bounds we neglect the coupling κ as this is a small

effect. We also neglect the phion mass. For other values of the phion mass the bounds

can be found by rescaling the decay widths with the appropriate phase space factor. Now
we confront this two dimensional parameter space with the experimental potential of the

NLC.
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Figure 1: Higgs width in comparison with the Standard Model.

3. NLC bounds

At the NLC the upper limits on the couplings in the present model come essentially from
the invisible decay, as the branching ratio into visible particles drops with increasing ϕ–

Higgs coupling (ω), whereas for small ω one has to consider visible Higgs decays, too.
Since the main source for Higgs production, the WW–fusion process, can not be used to

look for invisible Higgs decay, one is in principle left with the Higgsstrahlung und ZZ–
fusion reaction. For energies up to 500 GeV the Higgsstrahlungs cross section is dominant

and is of comparable size to the ZZ–fusion process even if one is folding in the branching

ratio B(Z → e+e−, µ+µ−). The possibility to tag an on–shell Z boson via a leptonic
system which is extremely useful for the discrimination of possible backgrounds makes

Higgsstrahlung to be the preferred production mechanism. Thus we only have considered
reactions containing an on shell Z boson with its decay into e+e− or µ+µ−. One should

be aware that a few events from the huge WW background may survive [3], but that
the Zνν background is dominant after imposing the cuts defined below. Then the signal

cross section is the well known Higgsstrahlungs cross section modified by the non standard
Higgs width due to phion decay. With the invariant mass of the invisible phion system,

sI , it has the form:

σ(e+e−→Z+E/) =
∫

dsI σ(e+e−→ZH)(sI)

√
sI Γ(H → E/)

π((M2
H − sI)2 + sI Γ(H → All)2)

We calculated the Zνν background with the standard set of graphs for Z production (ZZ–

production, WW–fusion and Z initial, final state radiation) by a Monte Carlo program
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Figure 2: Theoretical limits on the parameters of the model in the ω vs. MH plane. The
contour lines correspond to the cutoff scales Λ = 1019, 106, 104 and 103 GeV.

(see Ref. [5]). To reduce the background we used the fact that the angular distribution of
the Z–boson for the signal peaks for small values of | cos θZ | in contrast to the background.

Thus we imposed the cut | cos θZ | < 0.7. Because we assume the reconstruction of the
on-shell Z–boson we use the kinematical relation EZ = (s+M2

Z − sI)/(2
√
s) between the

Z energy and the invariant mass of the invisible system to define a second cut. Since the
differential cross section dσ/dsI contains the Higgs resonance at sI = M2

H , we impose the

following condition on the Z energy:

s+M2
Z − (MH + ∆H)2

2
√
s

< EZ <
s+M2

Z − (MH − ∆H)2

2
√
s

For the choice of ∆H a comment is in order. As long as the Higgs width is small, one is

allowed to use small ∆H , which reduces the background considerably keeping most of the
signal events. But in the case of large ϕ–Higgs coupling, ω, one looses valuable events.

To compromise between both effects we took ∆H = 30 GeV.
For the exclusion limits we assumed an integrated luminosity of 20 fb−1. To define

the 95% confidence level we used Poisson statistics similar to the description of Ref. [2].
The result is given in Fig. 3. One notices the somewhat reduced sensitivity for MH ≃MZ

due to a resonating Z boson in the ZZ background. For larger values of MH the limit

stems from the other Zνν backgrounds with W bosons in the t–channel and kinematical
constrains. For large ω the signal ceases to dominate over the background because the

Higgs peak is smeared out to an almost flat distribution.
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Figure 3: Exclusion limits at the NLC due to Higgs searches. The dashed line corresponds
to the invisible, the full line to all Higgs decay modes.

We conclude from this analysis that the NLC can put further limits on the parameter

space of our invisible Higgs model. Note that within the kinematic range very strong limits
on ω can be set. Again there is a range where the Higgs boson will not be discovered,

even if it does exist in this mass range. This has already been shown for the Higgs search
at LEP and also holds true for the heavy Higgs search at LHC. We see that a sufficiently

wide nonstandard Higgs resonance would make it very difficult to test the mechanism of
electroweak symmetry breaking at future colliders.
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Abstract

The production mechanisms and decay modes of the heavy neutral and charged
Higgs bosons in the Minimal Supersymmetric Standard Model are investigated
at future e+e− colliders in the TeV energy regime. We generate supersymmet-
ric particle spectra by requiring the MSSM Higgs potential to produce correct
radiative electroweak symmetry breaking, and we assume a common scalar
mass m0, gaugino mass m1/2 and trilinear coupling A, as well as gauge and
Yukawa coupling unification at the Grand Unification scale. Particular em-
phasis is put on the low tgβ solution in this scenario where decays of the Higgs
bosons to Standard Model particles compete with decays to supersymmetric
charginos/neutralinos as well as sfermions. In the high tgβ case, the super-
symmetric spectrum is either too heavy or the supersymmetric decay modes
are suppressed, since the Higgs bosons decay almost exclusively into b and τ
pairs. The main production mechanisms for the heavy Higgs particles are the
associated AH production and H+H− pair production with cross sections of
the order of a few fb.

1. Introduction

Supersymmetric theories [1,2] are generally considered to be the most natural extensions

of the Standard Model (SM). This proposition is based on several points. In these theo-
ries, fundamental scalar Higgs bosons [5,6] with low masses can be retained in the context

of high unification scales. Moreover, the prediction [8] of the renormalized electroweak
mixing angle sin2 θW = 0.2336 ± 0.0017, based on the spectrum of the Minimal Super-

symmetric Standard Model (MSSM) [10], is in striking agreement with the electroweak
precision data which yield sin2 θW = 0.2314(3) [11]. An additional attractive feature is

provided by the opportunity to generate the electroweak symmetry breaking radiatively
[9]. If the top quark mass is in the range between ∼ 150 and ∼ 200 GeV, the universal

squared Higgs mass parameter at the unification scale decreases with decreasing energy

and becomes negative at the electroweak scale, thereby breaking the SU(2)L × U(1)Y

gauge symmetry while leaving the U(1) electromagnetic and SU(3) color gauge symme-

tries intact [9]. The analysis of the electroweak data prefers a light Higgs mass [11,9] as
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predicted in supersymmetric theories; however since the radiative corrections depend only

logarithmically on the Higgs mass [10], the dependence is weak and no firm conclusions
can yet be drawn.

The more than doubling the spectrum of states in the MSSM gives rise to a rather
large proliferation of parameters. This number of parameters is however reduced drasti-

cally by embedding the low–energy supersymmetric theory into a grand unified (GUT)
framework. This can be achieved in supergravity models [9], in which the effective low–

energy supersymmetric theory [including the interactions which break supersymmetry] is
described by the following parameters: the common scalar mass m0, the common gaugino

mass m1/2, the trilinear coupling A, the bilinear coupling B, and the Higgs–higgsino mass
parameter µ. In addition, two parameters are needed to describe the Higgs sector: one

Higgs mass parameter [in general the mass of the pseudoscalar Higgs boson, MA] and the
ratio of the vacuum expectation values, tgβ = v2/v1, of the two Higgs doublet fields which

break the electroweak symmetry.

The number of parameters can be further reduced by introducing additional con-

straints which are based on physically rather natural assumptions:

(i) Unification of the b and τ Yukawa couplings at the GUT scale [11] leads to a
correlation between the top quark mass and tgβ [12,13,14]. Adopting the central value

of the top mass as measured at the Tevatron [15], tgβ is restricted to two narrow ranges

around tgβ ∼ 1.7 and 50, with the low tgβ solution theoretically somewhat favored [14].

(ii) If the electroweak symmetry is broken radiatively, then the bilinear coupling B
and the Higgs–higgsino mass parameter µ are determined up to the sign of µ. [The

sign of µ might be determined by future precision measurements of the radiative b decay
amplitude.]

(iii) It turns out a posteriori that the physical observables are nearly independent of
the GUT scale value of the trilinear coupling AG, for |AG| <∼ 500 GeV.

Mass spectra and couplings of all supersymmetric particles and Higgs bosons are

determined after these steps by just two mass parameters along with the sign of µ; we
shall choose to express our results in terms of the pseudoscalar Higgs boson A mass MA

and the common GUT gaugino mass m1/2.

In this paper we focus on heavy Higgs particles A, H and H± with masses of a few

hundred GeV, and therefore close to the decoupling limit [16]. The pattern of Higgs
masses is quite regular in this limit. While the upper limit on the mass of the lightest

CP–even Higgs boson h is a function of tgβ [17],

Mh <∼ 100 to 150 GeV [for low to high tgβ] (1.1)

the heavy Higgs bosons are nearly mass degenerate [c.f. Fig.1]

MA ≃ MH ≃ MH± (1.2)
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Moreover, the properties of the lightest CP–even Higgs boson h become SM–like in this

limit. The production of the heavy Higgs bosons becomes particularly simple in e+e−

collisions; the heavy Higgs bosons can only be pair–produced,

e+e− → A H (1.3)

e+e− → H+H− (1.4)

Close to this decoupling limit, the cross section for H Higgs–strahlung e+e− → ZH is very

small and the cross section for the WW fusion mechanism e+e− → νeν̄eH is appreciable
only for small values of tgβ, tgβ ∼ 1, and relatively small H masses, MH <∼ 350 GeV. The

cross section for ZZ fusion of the H is suppressed by an order of magnitude compared to
WW fusion. The pseudoscalar A particle does not couple to W/Z boson pairs at the tree

level.

The decay pattern for heavy Higgs bosons is rather complicated in general. For large

tgβ the SM fermion decays prevail. For small tgβ this is true above the tt̄ threshold of
MH,A >∼ 350 GeV for the neutral Higgs bosons and above the tb̄ threshold of MH± >∼ 180

GeV for the charged Higgs particles. Below these mass values many decay channels
compete with each other: decays to SM fermions f f̄ [and for H to gauge bosons V V ],

Higgs cascade decays, chargino/neutralino χiχj decays and decays to supersymmetric

sfermions f̃ ˜̄f

H → f f̄ , V V , hh , χiχj , f̃
¯̃
f (1.5)

A → f f̄ , hZ , χiχj , f̃
¯̃
f (1.6)

H± → f f̄ ′ , hW± , χiχj , f̃
¯̃
f ′ (1.7)

In this paper, we analyze in detail the decay modes of the heavy Higgs particles and
their production at e+e− linear colliders. The analysis will focus on heavy particles for

which machines in the TeV energy range are needed. The paper is organized in the
following way. In the next section we define the physical set–up of our analysis in the

framework of the MSSM embedded into a minimal supergravity theory. In section 3,
we discuss the production cross sections of the heavy Higgs bosons. In the subsequent

sections, we discuss the widths of the various decay channels and the final Higgs decay
products.

2. The Physical Set–Up

The Higgs sector of the Minimal Supersymmetric Standard Model is described at tree-level

by the following potential

V0 = (m2
H1

+ µ2)|H1|2 + (m2
H2

+ µ2)|H2|2 −m2
3(ǫijH1

iH2
j + h.c.)

+
1

8
(g2 + g′2)

[

|H1|2 − |H2|2
]2

+
1

2
g2|H i∗

1 H
i
2|2 (2.1)
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The quadratic Higgs terms associated with µ and the quartic Higgs terms coming with

the electroweak gauge couplings g and g′ are invariant under supersymmetric transforma-
tions. mH1

, mH2
and m3 are soft–supersymmetry breaking parameters with m2

3 = Bµ.

ǫij [i, j = 1, 2 and ǫ12 = 1] is the antisymmetric tensor in two dimensions and H1 ≡
(H1

1 , H
2
1 ) = (H0

1 , H
−
1 ), H2 ≡ (H1

2 , H
2
2 ) = (H+

2 , H
0
2 ) are the two Higgs-doublet fields. After

the symmetry breaking, three out of the initially eight degrees of freedom will be absorbed

to generate the W± and Z masses, leaving a quintet of scalar Higgs particles: two CP–
even Higgs bosons h and H , a CP–odd [pseudoscalar] boson A and two charged Higgs

particles H±.

Retaining only the [leading] Yukawa couplings of the third generation

λt =

√
2mt

v sin β
, λb =

√
2mb

v cosβ
and λτ =

√
2mτ

v cosβ
(2.2)

where tgβ = v2/v1 [with v2 = v2
1 + v2

2 fixed by the W mass, v = 246 GeV] is the ratio
of the vacuum expectation values of the fields H0

2 and H0
1 , the superpotential is given in

terms of the superfields Q = (t, b) and L = (τ, ντ ) by1

W = ǫij
[

λtH
i
2Q

jtc + λbH
i
1Q

jbc + λτH
i
1L

jτ c − µH i
1H

j
2

]

(2.3)

Supersymmetry is broken by introducing the soft–supersymmetry breaking bino B̃, wino

W̃ a [a =1–3] and gluino g̃a [a =1–8] mass terms,

1

2
M1 B̃ B̃ +

1

2
M2 W̃

a
W̃ a +

1

2
M3 g̃

a
g̃a , (2.4)

soft–supersymmetry breaking trilinear couplings,

ǫij
[

λtAtH
i
2Q̃

j t̃c + λbAbH
i
1Q̃

j b̃c + λτAτH
i
1L̃

j τ̃ c − µBH i
1H

j
2

]

(2.5)

and soft–supersymmetry breaking squark and slepton mass terms

M2
Q[t̃∗Lt̃L + b̃∗Lb̃L] +M2

U t̃
∗
Rt̃R +M2

D b̃
∗
Rb̃R +M2

L[τ̃ ∗Lτ̃L + ν̃τ
∗
Lν̃τ L] +M2

E τ̃
∗
Rτ̃R + · · · (2.6)

where the ellipses stand for the soft mass terms corresponding to the first and second

generation sfermions.

The minimal SUSY–GUT model emerges by requiring at the GUT scale MG:

(i) the unification of the U(1), SU(2) and SU(3) coupling constants αi = g2
i /4π [i = 1–3],

α3(MG) = α2(MG) = α1(MG) = αG (2.7)

1Note that our convention for the sign of µ is consistent with Ref.[18], which is opposite to the one
adopted in Ref.[19].
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(ii) a common gaugino mass; the Mi with i =1–3 at the electroweak scale are then related

through renormalization group equations (RGEs) to the gauge couplings,

Mi =
αi(MZ)

αG

m1/2 −→ M3(MZ) =
α3(MZ)

α2(MZ)
M2(MZ) =

α3(MZ)

α1(MZ)
M1(MZ) (2.8)

(iii) a universal trilinear coupling A

AG = At(MG) = Ab(MG) = Aτ (MG) (2.9)

(iii) a universal scalar mass m0

m0 = MQ = MU = MD = ML = ME

= mH1
(MG) = mH2

(MG) (2.10)

Besides the three parameters m1/2, AG and m0 the supersymmetric sector is described
at the GUT scale by the bilinear coupling BG and the Higgs–higgsino mass parameter

µG. The theoretically attractive assumption that the electroweak symmetry is broken
radiatively constrains the latter two parameters. Indeed, radiative electroweak symmetry

breaking results in two minimization conditions [see Ref.[19] for details] of the Higgs
potential; at the low–energy scale in the tree approximation, they are given by

1

2
M2

Z =
m2

H1
−m2

H2
tan2 β

tan2 β − 1
− µ2 (2.11)

Bµ =
1

2
(m2

H1
+m2

H2
+ 2µ2) sin 2β (2.12)

For given values of the GUT parameters m1/2, m0, AG as well as tgβ, the first minimization
equation can be solved for µ [to within a sign]; the second equation can then be solved

for B. Since m2
H1

and m2
H2

are related to MA through the RGEs, the solution for µ
and B can be approximately expressed as a function of MA and tgβ. The power of

supergravity models with radiative electroweak symmetry breaking becomes apparent
when one includes the one-loop contributions to the Higgs potential. It is through these

one–loop terms that most of the supersymmetric particle masses are determined; the
minimization conditions [which are also solved for µ to within a sign and B] fix the

masses in order that the electroweak symmetry is broken correctly, i.e. with the correct
value of MZ . [U(1)EM and SU(3) remain unbroken of course]. The one–loop contributions

and the minimization equations are given in Ref.[19] to which we refer for details.

A heavy top quark is required to break the electroweak symmetry radiatively, since

it is the large top Yukawa coupling which will drive one of the Higgs mass parameters
squared to a negative value. As emphasized before, the additional condition of unification

of the b–τ Yukawa couplings gives rise to stringent constraints on tgβ. The attractive
idea of explaining the large top Yukawa coupling as a result of a fixed point solution of

the RGEs leads to a relationship between Mt and the angle β, Mt ≃ (200 GeV) sin β for

36



tgβ <∼ 10, giving a further constraint on the model.

To limit the parameter space further, one could require that the SUGRA model is
not fine–tuned and the SUSY breaking scale should not be too high, a constraint which

can be particularly restrictive in the small tgβ region. However, the degree of fine–tuning
which can be considered acceptable is largely a matter of taste, so we disregard this issue

in our analysis.

We now detail the calculations of the supersymmetric particle spectrum more precisely.
We incorporate boundary conditions at both electroweak and GUT scales, adopting the

ambidextrous approach of Ref.[19]. We specify the values of the gauge and Yukawa cou-

plings at the electroweak scale, in particular Mt, tgβ and αs. The gauge and Yukawa
couplings are then evolved to the GUT scale MG [defined to be the scale µ̃ for which

α1(µ̃) = α2(µ̃)] using the two–loop RGEs [13]. At MG we specify the soft supersym-
metry breaking parameters m1/2, m0 and AG. We then evolve parameters down to the

electroweak scale where we apply the one–loop minimization conditions derived from the
one–loop effective Higgs potential and solve for µ to within a sign and B [we then can

integrate the RGEs back to MG and obtain µG and BG]. By this procedure, the su-
persymmetric spectrum is completely specified; that is, we generate a unique spectrum

corresponding to particular values of m1/2, m0, AG, tgβ and the sign of µ. It turns out
that the spectrum is nearly independent of AG, for |AG| <∼ 500 GeV. In most of our cal-

culations, we substitute a particular value of MA for m0 in order to introduce a mass
parameter which can be measured directly.

We discuss the SUSY spectrum and its phenomenological implications for two repre-
sentative points in the Mt–tanβ plane2. We choose Mpole

t = 175 GeV, consistent with the

most recent Tevatron analyses [15] throughout our calculations, and values of tgβ = 1.75
and 50, which are required (within uncertainties) by b–τ unification at MG. In particular,

we emphasize the low tgβ solutions; they are theoretically favored from considerations
such as b → sγ [21] and cosmological constraints [22]. The low tgβ solutions generate

much lighter SUSY spectra, more likely to be seen at future e+e− colliders. In both
the low and high tgβ regions we take3 αs(MZ) = 0.118 [23] and AG = 0, though the

qualitative behavior in each region should not depend greatly on these parameters.

(a) Low tanβ

As a typical example of the low tanβ region we consider the point Mpole
t = 175 GeV and

tan β = 1.75 for which λt(MG) lies in its “fixed-point” region [12,14]. If MA is fixed, the

scalar mass parameter m0 can be calculated as a function of the common gaugino mass
parameter m1/2 so that all Higgs and supersymmetric particle masses can in principle be

parameterized by m1/2. The correlation between m0 and m1/2 is shown in Fig.2 for three

2Our numerical analysis is consistent with the numbers obtained in Ref.[20], once their value of Aτ in
Tab.2 is corrected. We thank W. de Boer for a discussion on this point.

3This corresponds to the sin2 θW value quoted and compared with the high–precision electroweak
analyses in the Introduction.
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values of MA = 300, 600 and 900 GeV in the low tgβ region.

Some of the parameter space is already eliminated by experimental bounds on the
light Higgs mass, the chargino/neutralino masses, the light stop mass, the slepton masses

and the squark/gluino masses from LEP1/1.5 and the Tevatron [24]. The lower limits are
indicated by the non–solid lines in Fig.2. Low values of m1/2 <∼ 60 GeV are excluded by

the lower bound on the gaugino masses. For µ > 0, the bound from the negative search
of charginos at LEP1.5 almost rules out completely the scenario with MA <∼ 300 GeV. If

the h boson is not discovered at LEP2, i.e. if Mh >∼ 95 GeV, the whole µ < 0 scenario [for
m1/2, m0 < 500 GeV] can be excluded, while for µ > 0 only the m1/2 > 200 GeV range

[which implies very large values of MA] would survive. The requirement that the lightest
neutralino is the LSP, and therefore its mass is larger than the lightest τ̃ mass, excludes

a small edge of the parameter space [dotted line] at small m0 with m1/2 > 200 GeV in
the µ < 0 case.

The masses of the Higgs bosons are shown in Fig.3a as a function of m1/2 for tgβ =
1.75, both signs of µ and for two representative values of m0 = 100 and 500 GeV. The

lightest Higgs boson has a rather small tree–level mass and Mh comes mainly from ra-
diative corrections; the maximal values [for m1/2 ∼ 400 GeV] are Mmax

h ∼ 90 GeV for

µ < 0 and ∼ 100 for µ > 0. Because the pseudoscalar mass is approximately given
by M2

A ∼ Bµ/ sin 2β ∼ Bµ [at the tree–level] and since Bµ turns out to be large

in this scenario, the pseudoscalar A is rather heavy especially for large values of m0,
and thus is almost mass degenerate with the heavy CP–even and charged Higgs bosons,

MA ∼ MH ≃ MH± . Note that MA is below the tt̄ threshold, MA <∼ 350 GeV, only if m0

and m1/2 are both of O(100) GeV.

The chargino/neutralino and sfermion masses are shown Fig.3b-d as a function of
m1/2 for the two values MA = 300 and 600 GeV and for both signs of µ. In the case of

charginos and neutralinos, the masses are related through RGEs by the same ratios that
describe the gauge couplings at the electroweak scale. The LSP is almost bino–like [with

a mass mχ0
1
∼ M1] while the next–to–lightest neutralino and the lightest chargino are

wino–like [with masses mχ0
2
∼ mχ+

1
∼M2 ∼ 2mχ0

1
]. The heavier neutralinos and chargino

are primarily higgsinos with masses mχ0
3
∼ mχ0

4
∼ mχ+

2
∼ |µ|. Note that the masses

approximately scale as MA and that the decay of the heavy scalar and pseudoscalar Higgs

bosons into pairs of the heaviest charginos and neutralinos is kinematically not allowed.

The left– and right–handed charged sleptons and sneutrinos are almost mass degen-

erate, the mass differences not exceeding O(10) GeV; the mixing in the τ sector is rather
small for small tgβ, allowing one to treat all three generations of sleptons on the same

footing. In the case of squarks, only the first two generations are degenerate, with left–
and right–handed squarks having approximately the same mass. The mixing in the stop

as well as in the sbottom sector leads to a rather substantial splitting between the two
stop or sbottom mass eigenstates. Only for small values of MA and for µ < 0 is b̃1 the

lightest squark; otherwise t̃1 is the lightest squark state. Note that the squark masses
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increase with m1/2 and that they scale as MA i.e. as |µ|. The slepton masses decrease

with increasing m1/2: this is due to the fact that when m1/2 increases and MA is held
constant, m0 decreases [see Fig.2], and the dependence of the slepton masses on m0 is

stronger [for fixed m0, the slepton masses would increase with increasing m1/2].

(b) High tanβ

In this region we take tgβ = 50 as a representative example, a value consistent with

the unification of the t, b and τ Yukawa couplings. The set of possible solutions in the
parameter space [m1/2, m0] forMA = 300 and 600 GeV is shown in Fig.4. At tgβ = 50 and

Mpole
t = 175 GeV, we find solutions only for µ < 0; this is a result of the large one–loop

contribution to MA, the sign of which depends on µ [25]. The boundary contours given
in the figure correspond to tachyonic solutions in the parameter space: m2

τ̃1
< 0, M2

A < 0

or M2
h < 0 at the tree–level. The latter constraint is important for algorithmic reasons:

M2
h at the tree–level enters into the minimization equations in the form of a logarithm

[19]. Also the requirement of the lightest neutralino to be the LSP excludes a small edge
of the parameter space at small values of m0; this explains why the curves for MA = 300

and 600 GeV do not terminate for low m0 values.

Particle Mass (GeV) Mass (GeV) Mass (GeV) Mass (GeV)

MA 300 300 600 600

(m1/2, m0) (364,250) (352,800) (603,300) (590,800)

g̃ 940 910 1557 1524

t̃1,t̃2 662,817 753,896 1115,1285 1156,1325

b̃1,b̃2 689,787 804,894 1159,1260 1220,1312

ũ1,ũ2 881,909 1144,1164 1431,1479 1586,1628

d̃1,d̃2 878,912 1142,1167 1425,1481 1582,1630

τ̃1, τ̃2; ν̃τ 165,365; 325 567,740; 729 255,517; 485 586,812; 799

ẽ1, ẽ2; ν̃e 290,360; 351 813,838; 835 381,519; 513 833,901; 898

χ±
i 268,498 261,536 452,764 443,779

χ0
i 144,268,485,496 139,261,526,534 239,452,754,763 234,443,771,778

MA,MH± ,MH ,Mh 300,315,300,124 300,315,300,124 600,608,600,131 600,608,600,131

Tab.1: Particle spectra for Mpole
t = 175 GeV, tan β = 50 for selected MA,m1/2 and m0 values.

The sparticle spectra for MA = 300 and 600 GeV and two sets of m1/2 and (extreme)
m0 values are shown in Table 1. In all these cases, the particle spectrum is very heavy;

hence most of the SUSY decay channels of the Higgs particles are shut for large tgβ. The
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only allowed decay channels are H,A → τ̃1τ̃1, χ
0
1χ

0
1 and H± → τ̃1ν̃ [for large MA values].

However, the branching ratios of these decay channels are suppressed by large bb̄ and
tb̄ widths of the Higgs particles for large tgβ: while the supersymmetric decay widths

are of the order O(0.1 GeV), the decays involving b quarks have widths O(10 GeV) and

dominate by 2 orders of magnitude.

(c) Additional Constraints

There are additional experimental constraints on the parameter space for both high and

low tgβ; the most important of these are the b → sγ, Z → bb, and dark matter [relic LSP
abundance] constraints. These constraints are much more restrictive in the high tgβ case.

Recent studies [21] have indicated that the combination of b → sγ, dark matter and

mb constraints disfavor the high tgβ solution for which the t, b and τ Yukawa couplings are
equal, in particular the minimal SUSY–SO(10) model with universal soft-supersymmetry

breaking terms at MG. This model can, however, be saved if the soft terms are not univer-
sal [implying a higgsino–like lightest neutralino], and there exist theoretical motivations

for non–universal soft terms at MG [26]. The presently favored Z → bb̄ decay width would

favor a very low A mass for large tgβ.

For low tgβ, these additional constraints do not endanger the model, yet they can
significantly reduce the available parameter space. In particular the Z → bb constraint

favors a light chargino and light stop for small to moderate values of tgβ [27,28] so that
they could be detected at LEP2 [28]. The dark matter constraint essentially places an

upper limit on m0 and m1/2 [29]. The b → sγ constraint [30], on the other hand, is
plagued with large theoretical uncertainties mainly stemming from the unknown next-to-

leading QCD corrections and uncertainties in the measurement of αs(MZ). However, it is
consistent with the low tgβ solution and may in the future be useful in determining the

sign of µ [31].

3. Production Mechanisms

The main production mechanisms of neutral Higgs bosons at e+e− colliders are the Higgs–
strahlung process and pair production,

(a) Higgs-strahlung e+e− → (Z) → Z + h/H

(b) pair production e+e− → (Z) → A + h/H

as well as the WW and ZZ fusion processes,

(c) fusion processes e+e− → ν̄ν (WW ) → ν̄ν + h/H

e+e− → e+e−(ZZ) → e+e− + h/H

[The CP–odd Higgs boson A cannot be produced in the Higgs–strahlung and fusion pro-

cesses to leading order since it does not couple to V V pairs.] The charged Higgs particle
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can be pair produced through virtual photon and Z boson exchange,

(d) charged Higgs e+e− → (γ, Z∗) → H+H−

[For masses smaller than ∼ 170 GeV, the charged Higgs boson is also accessible in top
decays, e+e− → tt̄ with t→ H+b.]

The production cross sections4 for the neutral Higgs bosons are suppressed by mixing

angle factors compared to the SM Higgs production,

σ(e+e− → Zh) , σ(V V → h) , σ(e+e− → AH) ∼ sin2(β − α) (3.1)

σ(e+e− → ZH) , σ(V V → H) , σ(e+e− → Ah) ∼ cos2(β − α) (3.2)

while the cross section for the charged Higgs particle does not depend on any parameter
other than MH±.

In the decoupling limit, MA ≫ MZ , the HV V coupling vanishes, while the hV V

coupling approaches the SM Higgs value

gHV V = cos(β − α) →M2
Z sin 4β/2M2

A → 0 (3.3)

ghV V = sin(β − α) → 1 −O(M4
Z/M

4
A) → 1 (3.4)

Hence, the only relevant mechanisms for the production of the heavy Higgs bosons in this
limit will be the associated pair production (b) and the pair production of the charged

Higgs particles (d). The cross sections, in the decoupling limit and for
√
s ≫ MZ , are

given by [we use MH ∼MA]

σ(e+e− → AH) =
G2

FM
4
Z

96πs
(v2

e + a2
e)β

3
A (3.5)

σ(e+e− → H+H−) =
2G2

FM
4
W s

4
W

3πs

[

1 +
vevH

8s2
W c

2
W

+
(a2

e + v2
e)v

2
H

256c4Ws
4
W

]

β3
H± (3.6)

where βj = (1 − 4M2
j /s)

1/2 is the velocity of Higgs bosons, the Z couplings to electrons

are given by ae = −1, ve = −1 + 4 sin2 θW , and to the charged Higgs boson by vH =
−2 + 4 sin2 θW . The cross sections for hA and HZ production vanish in the decoupling

limit since they are proportional to cos2(β − α).

The cross section for the fusion process, e+e− → ν̄eνeH , is enhanced at high energies
since it scales like M−2

W log s/M2
H . This mechanism provides therefore a useful channel for

H production in the mass range of a few hundred GeV below the decoupling limit and
small values of tgβ, where cos2(β−α) is not prohibitively small; the cross section, though,

4The complete analytical expressions of the cross sections can be found, e.g., in Ref.[32]. Note that in
this paper there are a few typos that we correct here: in eq.(20), the factor 92 should replaced by 96; in
the argument of the λ function of the denominator in eq.(21), the parameter M2

A
should be replaced by

M2
Z
; finally, the minus sign in the interference term in eq.(25) should be replaced by a plus sign.
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becomes gradually less important for increasing MH and vanishes in the decoupling limit.

In the high energy regime, the WW → H fusion cross section is well approximated by
the expression

σ(e+e− → ν̄eνeH) =
G3

FM
4
W

4
√

2π3

[(

1 +
M2

H

s

)

log
s

M2
H

− 2

(

1 − M2
H

s

)]

cos2(β − α) (3.7)

obtained in the effective longitudinal W approximation. Since the NC couplings are small
compared to the CC couplings, the cross section for the ZZ fusion process is ∼ 16 cos4 θW ,

i.e. one order of magnitude smaller than for WW fusion.

Numerical results for the cross sections are shown in Fig.5 at high–energy e+e− colliders
as a function of

√
s TeV for the two values tgβ = 1.75 and 50, and for pseudoscalar masses

MA = 300, 600 and 900 GeV [note that MH ≃ MH± ≃ MA as evident from Figs. 1 and

3a]. For a luminosity of
∫ L = 200 fb−1, typically a sample of about 1000 HA and H+H−

pairs are predicted for heavy Higgs masses of ∼ 500 GeV at
√
s = 1.5 TeV. For small tgβ

values, tgβ <∼ 2, a few hundred events are predicted in the WW → H fusion process for
H masses ∼ 300 GeV. The cross sections for the hA and HZ processes are too low, less

than ∼ 0.1 fb, to be useful for MH >∼ 300 GeV; Fig.5b.

Note that the cross sections for the production of the lightest Higgs boson h in the
decoupling limit and for

√
s≫MZ ,Mh are simply given by

σ(e+e− → ZZ) ≃ G2
FM

4
Z

96πs
(v2

e + a2
e) (3.8)

σ(e+e− → ν̄eνeh) ≃ G3
FM

4
W

4
√

2π3
log

s

M2
h

(3.9)

The cross sections are the same as for the SM Higgs particle and are very large ∼ 100 fb,

especially for the WW fusion mechanism.

4. Decay Modes

4.1 Decays to standard particles

For large tgβ the Higgs couplings to down–type fermions dominate over all other
couplings. As a result, the decay pattern is in general very simple. The neutral Higgs

bosons will decay into bb̄ and τ+τ− pairs for which the branching ratios are close to ∼ 90 %
and ∼ 10 %, respectively. The charged Higgs particles decay into τντ pairs below and

into tb pairs above the top–bottom threshold.

The partial decay widths of the neutral Higgs bosons5, Φ = H and A, to fermions are
given by [6]

Γ(Φ → f̄ f) = Nc
GFMΦ

4
√

2π
g2
Φffm

2
fβ

p
f (4.1)

5We refrain from a discussion of the h decays which become SM–like in the decoupling limit. In
addition, we discuss only the dominant two–body decay modes of the heavy Higgs bosons; for an updated
and more detailed discussion, including also three–body decays, see Ref.[33].

42



with p = 3(1) for the CP–even (odd) Higgs bosons; βf = (1− 4m2
f/M

2
Φ)1/2 is the velocity

of the fermions in the final state, Nc the color factor. For the decay widths to quark pairs,
the QCD radiative corrections are large and must be included; for a recent update and a

more detailed discussion, see Ref.[34].

The couplings of the MSSM neutral Higgs bosons [normalized to the SM Higgs coupling

gHSMff =
[√

2GF

]1/2
mf and gHSMV V = 2

[√
2GF

]1/2
M2

V ] are given in Table 2.

Φ gΦūu gΦd̄d gΦV V

h cosα/ sin β − sinα/ cosβ sin(β − α)
H sinα/ sinβ cosα/ cosβ cos(β − α)
A 1/tgβ tgβ 0

Tab. 2: Higgs boson couplings in the MSSM to fermions and gauge bosons relative to the SM

Higgs couplings.

In the decoupling limit, MA ≫MZ , we have

cosα ∼ sin β − cosβ
M2

Z

2M2
A

sin 4β → sin β (4.2)

sinα ∼ − cosβ + sin β
M2

Z

2M2
A

sin 4β → − cosβ (4.3)

Therefore the hff couplings reduce to the SM Higgs couplings, while the Hff couplings

become equal to those of the pseudoscalar boson A,

cosα/ sinβ → 1

− sinα/ cosβ → 1

− sinα/ sinβ → 1/tgβ

cosα/ cosβ → tgβ (4.4)

The partial width of the decay mode H+ → ud̄ is given by

Γ(H+ → ud̄) =
NcGF

4
√

2π

λ
1/2
ud,H±

MH±

|Vud|2 ×
[

(M2
H± −m2

u −m2
d)
(

m2
dtg

2β +m2
uctg

2β
)

− 4m2
um

2
d

]

(4.5)

with Vud the CKM–type matrix element for quarks and λ is the two–body phase space

function defined by

λij,k = (1 −M2
i /M

2
k −M2

j /M
2
k )2 − 4M2

i M
2
j /M

4
k (4.6)
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For decays into quark pairs, the QCD corrections must be also included.

Below the t̄t threshold, a variety of channels is open for the decays of the heavy CP–
even Higgs bosons, the most important being the cascade decays H → ΦΦ with Φ = h or

A, with a partial width [for real light Higgs bosons]

Γ(H → ΦΦ) =
GF

16
√

2π

M4
Z

MH

g2
HΦΦβΦ (4.7)

where βΦ = (1 − 4M2
Φ/M

2
H)1/2 and the radiatively corrected three–boson self–couplings

[to leading order], in units of g′Z = (
√

2GF )1/2M2
Z , are given by

gHhh = 2 sin 2α sin(β + α) − cos 2α cos(β + α) + 3
ǫ

M2
Z

sinα cos2 α

sin β
(4.8)

gHAA = − cos 2β cos(β + α) +
ǫ

M2
Z

sinα cos2 β

sin β

In contrast to the previous couplings, the leading m4
t radiative corrections cannot be

absorbed entirely in the redefinition of the mixing angle α, but they are renormalized by
an explicit term depending on the parameter ǫ given by [MS is the common squark mass

at the electroweak scale]

ǫ =
3GF√
2π2

m4
t

sin2 β
log

(

1 +
M2

S

m2
t

)

(4.9)

In the decoupling limit, these couplings approach the values

gHhh → 3

2
sin 4β

gHAA → −1

2
sin 4β (4.10)

In the mass range above the WW and ZZ thresholds, where the HV V couplings are

not strongly suppressed for small values of tgβ, the partial widths of the H particle into
massive gauge bosons can also be substantial; they are given by

Γ(H → V V ) =

√
2GF cos2(α− β)

32π
M3

H(1 − 4κV + 12κ2
V )(1 − 4κV )1/2 δ′V (4.11)

with κV = M2
V /M

2
H and δ′V = 2(1) for V = W (Z).

For small values of tgβ and below the t̄t and the tb̄ thresholds, the pseudoscalar and

charged Higgs bosons can decay into the lightest Higgs boson h and a gauge boson;
however these decays are suppressed by cos2(β − α) and therefore are very rare for large

A masses. The partial decay widths are given by

Γ(A→ hZ) =
GF cos2(β − α)

8
√

2π

M4
Z

MA
λ

1/2
Zh,AλAh,Z

Γ(H+ → hW+) =
GF cos2(β − α)

8
√

2π

M4
W

MH±

λ
1

2

Wh,H±λH±h,W (4.12)
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In the decoupling limit, the partial widths of all decays of the heavy CP–even, CP–

odd and charged Higgs bosons involving gauge bosons vanish since cos2(β − α) → 0. In
addition, the H → hh decay width is very small since it is inversely proportional to MH ,

and H → AA is not allowed kinematically. Therefore, the only relevant channels are the

decays into b̄b/t̄t for the neutral and tb̄ for the charged Higgs bosons. The total decay
widths of the three bosons H,A and H±, into standard particles can be approximated in

this limit by

Γ(Hk → all) =
3GF

4
√

2π
MHk

[

m2
btg

2β +m2
t ctg

2β
]

(4.13)

[We have neglected the small contribution of the decays into τ leptons for large tgβ.]

4.2 Decays to charginos and neutralinos

The decay widths of the Higgs bosons Hk [k = (1, 2, 3, 4) correspond to (H, h,A,H±)]

into neutralino and chargino pairs are given by [35]

Γ(Hk → χiχj) =
GFM

2
W

2
√

2π

MHk
λ

1/2
ij,k

1 + δij

[

(F 2
ijk + F 2

jik)

(

1 − m2
χi

M2
Hk

−
m2

χj

M2
Hk

)

−4ηkǫiǫjFijkFjik

mχi
mχj

M2
Hk

]

(4.14)

where η1,2,4 = +1, η3 = −1 and δij = 0 unless the final state consists of two identical

(Majorana) neutralinos in which case δii = 1; ǫi = ±1 stands for the sign of the i’th
eigenvalue of the neutralino mass matrix [the matrix Z is defined in the convention of

Ref.[18], and the eigenvalues of the mass matrix can be either positive or negative] while
ǫi = 1 for charginos; λij,k is the usual two–body phase space function given in eq.(4.4).

In the case of neutral Higgs boson decays, the coefficients Fijk are related to the

elements of the matrices U, V for charginos and Z for neutralinos,

Hk → χ+
i χ

−
j : Fijk =

1√
2

[ekVi1Uj2 − dkVi2Uj1] (4.15)

Hk → χ0
iχ

0
j : Fijk =

1

2
(Zj2 − tan θWZj1) (ekZi3 + dkZi4) + i↔ j (4.16)

with the coefficients ek and dk given by

e1/d1 = cosα/− sinα , e2/d2 = sinα/ cosα , e3/d3 = − sin β/ cosβ (4.17)

For the charged Higgs boson, the coupling to neutralino/chargino pairs are given by

Fij4 = cosβ

[

Zj4Vi1 +
1√
2

(Zj2 + tan θWZj1)Vi2

]

Fji4 = sin β

[

Zj3Ui1 −
1√
2

(Zj2 + tan θWZj1)Ui2

]

(4.18)
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The matrices U, V for charginos and Z for neutralinos can be found in Ref.[18].

Since in most of the parameter space discussed in Section 2, the Higgs–higgsino mass
parameter |µ| turned out to be very large, |µ| ≫ M1,M2,MZ , it is worth discussing the

Higgs decay widths into charginos and neutralinos in this limit. First, the decays of the

neutral Higgs bosons into pairs of [identical] neutralinos and charginos Hk → χiχi will
be suppressed by powers of M2

Z/µ
2. This is due to the fact that neutral Higgs bosons

mainly couple to mixtures of higgsino and gaugino components, and in the large µ limit,
neutralinos and charginos are either pure higgsino– or pure gaugino–like. For the same

reason, decays H+ → χ0
1,2χ

+
1 and χ0

3,4χ
+
2 of the charged Higgs bosons will be suppressed.

Furthermore, since in this case MA is of the same order as |µ|, decays into pairs of heavy

charginos and neutralinos will be kinematically forbidden. Therefore, the channels

H,A → χ0
1 χ

0
3,4 , χ

0
2 χ

0
3,4 and χ±

1 χ
∓
2

H+ → χ+
1 χ

0
3,4 and χ+

2 χ
0
1,2 (4.19)

will be the dominant decay channels of the heavy Higgs particles. Up to the phase space

suppression [i.e. for MA sufficiently larger than |µ|], the partial widths of these decay

channels, in units of GFM
2
WMHk

/(4
√

2π), are given by [35]

Γ(H → χ0
1χ

0
3,4) =

1

2
tan2θW (1 ± sin 2β)

Γ(H → χ0
2χ

0
3,4) =

1

2
(1 ± sin 2β)

Γ(H → χ±
1 χ

∓
2 ) = 1 (4.20)

Γ(A→ χ0
1χ

0
4,3) =

1

2
tan2θW (1 ± sin 2β)

Γ(A→ χ0
2χ

0
4,3) =

1

2
(1 ± sin 2β)

Γ(A→ χ±
1 χ

∓
2 ) = 1 (4.21)

Γ(H+ → χ+
1 χ

0
3,4) = 1

Γ(H+ → χ+
2 χ

0
1) = 1

Γ(H+ → χ+
2 χ

0
2) = tan2θW (4.22)

[We have used the fact that in the decoupling limit sin 2α = − sin 2β.] If all these channels
are kinematically allowed, the total decay widths of the heavy Higgs bosons to chargino

and neutralino pairs will be given by the expression

Γ(Hk →
∑

χiχj) =
3GFM

2
W

4
√

2π
MHk

(

1 +
1

3
tan2 θW

)

(4.23)

which holds universally for all the three Higgs bosons H,A,H±.

4.3 Decays to squarks and sleptons
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Decays of the neutral and charged Higgs bosons, Hk = h,H,A,H±, to sfermion pairs can

be written as

Γ(Hk → f̃if̃j) =
NCGF

2
√

2πMHk

λ
1/2

f̃if̃j ,Hk
g2

Hkf̃if̃j
(4.24)

f̃i with i = 1, 2 are the sfermion mass eigenstates which are related to the current eigen-

states f̃L, f̃R by

f̃1 = f̃L cos θf + f̃R sin θf

f̃2 = −f̃L sin θf + f̃R cos θf (4.25)

The mixing angles θf are proportional to the masses of the partner fermions and they

are important only in the case of third generation sfermions. The couplings gHkf̃if̃ ′
j

of the

neutral and charged Higgs bosons Hk to sfermion mass eigenstates are superpositions of

the couplings of the current eigenstates,

gHkf̃if̃ ′
j
=

∑

α,β=L,R

Tijαβ gΦf̃αf̃ ′
β

(4.26)

The elements of the 4 × 4 matrix T are given in Tab.3a. The couplings gHkf̃αf̃ ′
β
, in the

current eigenstate basis f̃α,β = f̃L,R [normalized to 2(
√

2GF )1/2] may be written as [6,35]

gHkf̃Lf̃L
= m2

fg
Φ
1 +M2

Z(T f
3 − efs

2
W )gΦ

2

gHkf̃Rf̃R
= m2

fg
Φ
1 +M2

Zefs
2
Wg

Φ
2

gHkf̃Lf̃R
= −1

2
mf

[

µgΦ
3 − Afg

Φ
4

]

(4.27)

for the neutral Higgs bosons, Hk = h,H,A. T3 = ±1/2 is the isospin of the [left–
handed] sfermion and ef its electric charge. The coefficients gΦ

i are given in Tab.3b; in

the decoupling limit, the coefficients gΦ
2 reduce to

cos(β + α) → sin 2β

sin(β + α) → − cos 2β (4.28)

[for the other coefficients, see eqs.(4.2)]. For the charged Higgs bosons, the couplings [also
normalized to 2(

√
2GF )1/2] are

gH+ũαd̃β
= − 1√

2

[

gαβ
1 +M2

W g
αβ
2

]

(4.29)

with the coefficients gαβ
1/2 with α, β = L,R listed in Table 3c.
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i, j / α, β LL RR LR RL

11 cos θf cos θf ′ sin θf sin θf ′ cos θf sin θf ′ sin θf cos θf ′

12 − cos θf sin θf ′ sin θf cos θf ′ cos θf cos θf ′ − sin θf sin θf ′

21 − sin θf cos θf ′ cos θf sin θf ′ − sin θf sin θf ′ cos θf cos θf ′

22 sin θf sin θf ′ cos θf cos θf ′ − sin θf cos θf ′ − cos θf sin θf ′

Tab. 3a: Transformation matrix for the Higgs couplings to sfermions in the presence of mixing.

f̃ Φ gΦ
1 gΦ

2 gΦ
3 gΦ

4

h cosα/ sinβ − sin(α + β) − sinα/ sinβ cosα/ sin β
ũ H sinα/ sin β cos(α+ β) cosα/ sinβ sinα/ sinβ

A 0 0 1 −1/tgβ

h − sinα/ cosβ − sin(α + β) cosα/ cosβ − sinα/ cosβ

d̃ H cosα/ cosβ cos(α+ β) sinα/ cosβ cosα/ cosβ
A 0 0 1 −tgβ

Tab. 3b: Coefficients in the couplings of neutral Higgs bosons to sfermion pairs.

gLL
1/2 gRR

1/2 gLR
1/2 gRL

1/2

m2
u/tanβ + m2

dtanβ mumd(tgβ + 1/tgβ) md(µ + Adtgβ) mu(µ + Au/tgβ)
− sin 2β 0 0 0

Tab. 3c: Coefficients in the couplings of charged Higgs bosons to sfermion pairs.

Mixing between sfermions occurs only in the third–generation sector. For the first
two generations the decay pattern is rather simple. In the limit of massless fermions, the

pseudoscalar Higgs boson does not decay into sfermions since by virtue of CP–invariance
it couples only to pairs of left– and right–handed sfermions with the coupling proportional

to mf . In the asymptotic regime, where the masses MH,H± are large, the decay widths of

the heavy CP–even and charged [36] Higgs bosons into sfermions are proportional to

Γ(H,H+ → f̃ f̃) ∼ GFM
4
W

MH
sin2 2β (4.30)
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These decay modes can be significant only for low values tgβ [which implies sin2 2β ∼ 1].

However, in this regime the decay widths are inversely proportional to MH , and thus
cannot compete with the decay widths into charginos/neutralinos and ordinary fermions

which increase with increasing Higgs mass. Therefore, the decays into first and second

generations are unlikely to be important.

In the case of the third generation squarks, the Higgs decay widths can be larger by
more than an order of magnitude. For instance the decay widths of the heavy neutral

Higgs boson into top squarks of the same helicity is proportional to

Γ(H → t̃t̃) ∼ GFm
4
t

MHtan2β
(4.31)

in the asymptotic region, and it will be enhanced by large coefficients [for small tgβ]

compared to first/second generation squarks. Conversely, the decay widths into sbottom
quarks can be very large for large tgβ. Furthermore, the decays of heavy neutral CP–even

and CP–odd Higgs bosons to top squarks of different helicities will be proportional in the
asymptotic region [and for the CP–even, up to the suppression by mixing angle] to

Γ(H,A→ t̃t̃) ∼ GFm
2
t

MH
[µ+ At/tanβ]2 (4.32)

For µ and At values of the order of the Higgs boson masses, these decay widths will

be competitive with the chargino/neutralino and standard fermion decays. Therefore, if
kinematically allowed, these decay modes have to be taken into account.

4.4 Numerical results

The decay widths of the H,A and H± Higgs bosons into the sum of charginos and neu-
tralinos, squark or slepton final states, as well as the standard and the total decay widths

are shown in Figs.6a, 7a and 8a as a function of m1/2 for two values of the pseudoscalar
Higgs boson mass MA = 300 and 600 GeV, and for positive and negative µ values; tgβ is

fixed to 1.75.

Fig.6a shows the various decay widths for the heavy CP–even Higgs boson. For MA =
300 GeV, the H → tt̄ channel is still closed and the decay width into standard particles is

rather small, being of O(250) MeV. In this case, the decays into the lightest stop squarks
which are kinematically allowed for small values of m1/2 will be by far the dominant decay

channels. This occurs in most of the m1/2 range if µ > 0, but if µ < 0 only for m1/2 <∼ 50

GeV which is already ruled out by CDF and LEP1.5 data.

The decays into charginos and neutralinos, although one order of magnitude smaller
than stop decays when allowed kinematically, are also very important. They exceed the

standard decays in most of the m1/2 range, except for large values of m1/2 and µ < 0
where no more phase space is available for the Higgs boson to decay into combinations

of the heavy and light chargino/neutralino states. For small m1/2 values, chargino and
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neutralino decays can be larger than the standard decays by up to an order of magnitude.

As expected, the decay widths into sleptons are rather small and they never exceed the
widths into standard particles, except for large values ofm1/2. Note that due to the isospin

and charge assignments, the coupling of the H boson to sneutrinos is approximately a
factor of two larger than the coupling to the charged sleptons. Since all the sleptons of

the three generations are approximately mass degenerate [the mixing in the τ̃ sector is
very small for low values of tgβ], the small decay widths into sleptons are given by the

approximate relation: Γ(H → ν̃ν̃) ≃ 4Γ(H → l̃Ll̃L) ≃ 4Γ(H → l̃R l̃R).

For larger values of MH , MH >∼ 350 GeV, the decay widths into supersymmetric

particles have practically the same size as discussed previously. However, since the H → tt̄
channel opens up, the decay width into standard model particles becomes rather large,

O(10 GeV), and the supersymmetric decays are no longer dominant. For MH ≃ 600 GeV,
Fig.6a, only the H → q̃q̃ decay width can be larger than the decay width to standard

particles; this occurs in the lower range of the m1/2 values. The chargino/neutralino
decays have a branching ratio of ∼ 20%, while the branching ratios of the decays into

sleptons are below the 1% level.

Fig.6b and 6c show the individual decay widths of the heavy H boson with a mass
MH ≃ 600 GeV into charginos, neutralinos, stop quarks and sleptons for the set of pa-

rameters introduced previously. For decays into squarks, only the channels H → t̃1t̃1, t̃1t̃2,

and in a very small range of m1/2 values the channel H → b̃1b̃1, are allowed kinematically
[see Fig.3c]. The decay into two different stop states is suppressed by the [small] mixing

angle, and due to the larger phase space the decay H → t̃1t̃1 is always dominating.

For the decays into chargino and neutralinos, the dominant channels are decays into
mixtures of light and heavy neutralinos and charginos, in particular H → χ+

1 χ
−
2 and

H → χ0
1χ

0
3 or χ0

2χ
0
3. This can be qualitatively explained, up to phase space suppression

factors, by recalling the approximate values of the relative branching ratios in the large

|µ| limit given in eqs.(4.18–20): Γ(H → χ±
1 χ

∓
2 ) ∼ 1, while Γ(H → χ0

2χ
0
3) ∼ 1 and

Γ(H → χ0
1χ

0
3) ∼ tan2 θW because sin 2β is close to one. The mixed decays involving χ0

4

are suppressed since they are proportional to (1 − sin 2β), and all other decay channels

are suppressed by powers of M2
Z/µ

2 for large |µ| values.

The decay widths for the pseudoscalar Higgs boson are shown in Fig.7a. There are no
decays into sleptons, since the only decay allowed by CP–invariance, A→ τ̃1τ̃2, is strongly

suppressed by the very small τ̃ mixing angle. For MA = 300 GeV, the decay into the
two stop squark eigenstates, A→ t̃1

¯̃t2, is not allowed kinematically and the only possible

supersymmetric decays are the decays into charginos and neutralinos. The sum of the
decay widths into these states can be two orders of magnitude larger than the decay width

into standard particles.

For values ofMA above the tt̄ threshold, the decay width into charginos and neutralinos

is still of the same order as for low MA, but because of the opening of the A → tt̄ mode,
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the total decay width increases dramatically and the chargino/neutralino decay branching

ratio drops to the level of 20%. As in the case of the heavy CP–even Higgs boson H , the
relative decay widths of the pseudoscalar boson into charginos and neutralinos, Fig.7b,

are larger for the channels involving mixtures of light and heavy neutralinos or charginos;

the dominant decay modes are, roughly, A → χ+
1 χ

−
2 and A → χ0

1χ
0
4 or χ0

2χ
0
4. Again, this

can be qualitatively explained, up to phase space suppression factors, by recalling the

approximate formulae of eqs.(4.18–19), since the situation is the same as for H , with the
two neutralino states χ0

3 and χ0
4 being interchanged.

For small values of the common gaugino mass, m1/2 <∼ 100 GeV, the decay mode of

the pseudoscalar Higgs boson into stop squarks, A → t̃1
¯̃t2, is phase space allowed. In

this case, it is competitive with the top–antitop decay mode. As discussed previously, the

1/M2
A suppression [and to a lesser extent the suppression due to the mixing angle] of the

A → t̃1
¯̃t2 decay width compared to Γ(A → tt̄) will be compensated by the enhancement

of the At̃1
¯̃t2 coupling for large values of µ and At.

Fig.8a shows the decay widths for the charged Higgs boson. Since the dominant decay
channel H+ → tb̄ is already open for MH± ≃ 300 GeV [although still slightly suppressed

by phase space], the charged Higgs decay width into standard particles is rather large and

it increases only by a factor of ∼ 4 when increasing the pseudoscalar mass to MA = 600
GeV. The situation for the supersymmetric decays is quite similar for the two masses: the

chargino/neutralinos decay modes have branching ratios of the order of a few ten percent,
while the branching ratios for the decays into sleptons, when kinematically allowed, do

not exceed the level of a few percent, as expected. Only the decay H+ → t̃1b̃1, the only
squark decay mode allowed by phase space [see Fig.3c] for relatively low values of m1/2,

is competitive with the tb̄ decay mode.

The decay widths of the charged Higgs into the various combinations of charginos and
neutralinos are shown in Fig.8b for MH± ∼ 600 GeV. The dominant channels are again

decays into mixtures of gauginos and higgsinos, since |µ| is large. The pattern follows

approximately the rules of eq.(4.22), modulo phase suppression.

As discussed in section 2, since the chargino, neutralino and sfermion masses scale as
MA, the situation for even larger values of the pseudoscalar Higgs boson mass, MA ∼ 1

TeV, will be qualitatively similar to what has been discussed for MA ∼ 600 GeV. The only
exception is that there will be slightly more phase space available for the supersymmetric

decays to occur.

5. Final Decay Products of the Higgs Bosons

In this section, we will qualitatively describe the final decay products of the produced
Higgs bosons. Assuming that MA is large, MA >∼ 500 GeV, the decays into standard

particles [and more precisely, the tt̄ for the neutral and the tb̄ decays for the charged Higgs
bosons] always have substantial branching ratios, even for the value tgβ = 1.75 which will
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be chosen for the discussion. Therefore, to investigate decays into SUSY particles in the

main production processes, e+e− → HA and H+H−, one has to look for final states where
one of the Higgs bosons decays into standard modes while the other Higgs boson decays

into charginos, neutralinos or stop squarks. As discussed previously, the decays into the

other squarks are disfavored by phase space, while the branching ratios into sleptons are
always small and can be neglected.

Let us first discuss the case where one of the Higgs bosons decays into chargino and

neutralino pairs,

e+e− → H A → [ tt̄ ] [χ+χ− ] and [ tt̄ ] [χ0χ0 ]

e+e− → H+H− → [ tb ] [χ±χ0 ] (5.1)

The lightest chargino χ+
1 and next–to–lightest neutralino χ0

2 decay into [possibly virtual]
W,Z and the lightest Higgs boson h, assuming that decays into sleptons and squarks are

kinematically disfavored. In the limit of large |µ|, the decay widths [in the decoupling
limit] are proportional to [37]

Γ(χ+
1 → χ0

1W
+) ∼ sin2 2β (5.2)

Γ(χ0
2 → χ0

1Z) ∼ cos2 2β [(M2 −M1)/2µ]2

Γ(χ0
2 → χ0

1h) ∼ sin2 2β (5.3)

In most of the parameter space, the W/Z/h are virtual [in addition to the three–body
phase space factors, the decay widths are suppressed by powers of M2MZ/µ

2] except

near the upper values of m1/2. In the case of χ0
2, the channel χ0

2 → χ0
1Z mode is always

dominant although suppressed by additional powers of M2
2 /µ

2 compared to the χ0
2 → hχ0

1

mode, since both h and Z are off–shell, and the Z boson width is much larger than the
width of the h boson for small values of tgβ. The radiative decay χ0

2 → χ0
1γ should play

a marginal role except for very small values of m1/2 where the difference between the χ0
2

and Z boson masses becomes too large.

For large values ofm1/2, the sleptons become rather light compared to the gauginos and
the decays of the light chargino and neutralino into leptons+sleptons are kinematically

possible. In this case, these cascade decays become dominant since the partial widths for
large |µ| are given by

∑

l

Γ(χ0
2 → ll̃) =

∑

l

2Γ(χ±
1 → lν̃) =

3G2
FM

2
W√

2π
M2 (5.4)

and therefore not suppressed by powers of MZM2/µ
2, unlike the previous decay modes

[we assume of course that there is no suppression by phase–space]. The sleptons will then
decay into the LSP and massless leptons, leading to multi–lepton final states.

The heavier chargino, in the absence of squark and slepton decay modes, will decay

preferentially into the lightest chargino and neutralinos plus gauge or light Higgs bosons.
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The decay widths, in units of GFM
2
W |µ|/(8

√
2π) may be approximated in the decoupling

limit by [37]

χ+
2 → χ+

1 Z : Γ = 1

→ χ+
1 h : Γ = 1

→ χ0
1W

+ : Γ = tan2 θW

→ χ0
2W

+ : Γ = 1 (5.5)

The branching ratios for the various final states are roughly equal. Since χ+
2 is almost

higgsino–like, the decay widths into sleptons and partners of the light quarks, when kine-

matically allowed, are extremely small since they are suppressed by powers of m2
f/M

2
Z .

Because of the large mt value, only the decays into stop squarks and bottom quarks will

be very important. This decay is allowed in most of the parameter space for MA >∼ 600
GeV and, up to suppression by mixing angles, it is enhanced by a power m2

t [37]

Γ(χ+
2 → t̃b)

Γ(χ+
2 →W,Z, h)

∼ 3m2
t

M2
W

1

sin2 β(3 + tan2 θW )
∼ 4 (5.6)

compared to the other decays. Therefore, when kinematically possible, this decay will be
the dominant decay mode of the heavy charginos.

For the heavier neutralinos, χ0
3,4, the decay widths into W/Z/h bosons, again in units

of GFM
2
W |µ|/(8

√
2π) may be be written in the decoupling limit as [37]

χ0
3/4 → χ0

1Z : Γ =
1

2
tan2 θW (1 ± sin 2β)

→ χ0
1h : Γ =

1

2
tan2 θW (1 ∓ sin 2β)

→ χ0
2Z : Γ =

1

2
(1 ± sin 2β)

→ χ0
2h : Γ =

1

2
(1 ∓ sin 2β)

→ χ+
1 W

− : Γ = 2 (5.7)

The dominant mode is the charged decay, χ0
3,4 → χ+

1 W
−, followed by the modes involving

the h(Z) boson for χ0
4(χ

0
3). Because sin 2β ∼ 1, only one of the h or Z decay channels is

important. Here again, because of the higgsino nature of the two heavy neutralinos, the
decay widths into sleptons and the scalar partners of the light quarks are negligible; the

only important decays are the stop decays, χ0
3,4 → tt̃1, when they are allowed kinematically

[i.e. for not too large values of m1/2]. The ratio between stop and W/Z/h decay widths,

up to suppression by mixing angles, is also given by eq.(5.6), and the stop decays will
therefore dominate.

We now turn to the case where one of the produced Higgs particles decays into stop

squarks

e+e− → H A → [ tt̄ ] [ t̃1t̃1 ] and [ tt̄ ] [ t̃1t̃2 ]

53



e+e− → H+H− → [tb][t̃1b̃1] (5.8)

From the squark mass plots, Fig. 3c, the only decay modes of the lightest stop squark
allowed by phase space are

t̃1 → tχ0
1 , tχ0

2 , bχ+
1 (5.9)

Only the last decay mode occurs for relatively small values of m1/2, since mt̃1 < mt+mχ0
1,2

in this case. For larger values of m1/2, t̃1 is heavy enough to decay into top quarks plus

the lightest neutralinos. For these m1/2 values, the three decay modes of eq.(5.9) will have
approximately the same magnitude since the chargino and the neutralinos are gaugino–

like and there is no enhancement due to the top mass for the t̃1 → tχ0 decays.

The heavier stop squark, in addition to the previous modes, has decay channels with

t̃1 and Z/h bosons in the final state

t̃2 → t̃1Z , t̃1h (5.10)

These decays, in particular the decay into the lightest Higgs boson h, will be dominant

in the large |µ| limit, since they will be enhanced by powers of µ2.

Appendix A: Chargino and Neutralino Masses and Couplings

In this Appendix we collect the analytical expressions of the chargino and neutralino

masses and couplings, and we discuss the limit in which the Higgs–higgsino mass param-
eter |µ| is large.

The general chargino mass matrix [18],

MC =

[

M2

√
2MW sin β√

2MW cosβ µ

]

(A1)

is diagonalized by two real matrices U and V ,

U∗MCV
−1 → U = O− and V =

{

O+ if detMC > 0
σO+ if detMC < 0

(A2)

where σ is the matrix

σ =

[

±1 0
0 ±1

]

(A3)

with the appropriate signs depending upon the values of M2, µ, and tan β in the chargino
mass matrix. O± is given by:

O± =

[

cos θ± sin θ±
− sin θ± cos θ±

]

(A4)
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with

tan 2θ− =
2
√

2MW (M2 cosβ + µ sinβ)

M2
2 − µ2 − 2M2

W cosβ

tan 2θ+ =
2
√

2MW (M2 sin β + µ cosβ)

M2
2 − µ2 + 2M2

W cosβ
(A5)

This leads to the two chargino masses, the χ+
1,2 masses

mχ+
1,2

=
1√
2

[

M2
2 + µ2 + 2M2

W

∓
{

(M2
2 − µ2)2 + 4M4

W cos2 2β + 4M2
W (M2

2 + µ2 + 2M2µ sin 2β)
}1

2

]

1

2

(A6)

In the limit |µ| ≫M2,MZ , the masses of the two charginos reduce to

mχ+

1
≃ M2 −

M2
W

µ2
(M2 + µ sin 2β)

mχ+
2

≃ |µ| + M2
W

µ2
ǫµ (M2 sin 2β + µ) (A7)

where ǫµ is for the sign of µ. For |µ| → ∞, the lightest chargino corresponds to a pure wino
state with mass mχ+

1
≃ M2, while the heavier chargino corresponds to a pure higgsino

state with a mass mχ+

1
= |µ|.

In the case of the neutralinos, the four-dimensional neutralino mass matrix depends on
the same two mass parameters µ and M2, if the GUT relation M1 = 5

3
tan2 θW M2 ≃ 1

2
M2

[18] is used. In the (−iB̃,−iW̃3, H̃
0
1 , H̃

0
2 ) basis, it has the form

MN =











M1 0 −MZsW cos β MZsW sin β
0 M2 MZcW cosβ −MZcW sin β

−MZsW cosβ MZcW cosβ 0 −µ
MZsW sin β −MZcW sin β −µ 0











(A8)

It can be diagonalized analytically [38] by a single real matrix Z; the [positive] masses
of the neutralino states mχ0

i
are given by

ǫ1mχ0
1

= C1 −
(

1

2
a− 1

6
C2

)1/2

+

[

−1

2
a− 1

3
C2 +

C3

(8a− 8C2/3)1/2

]1/2

ǫ2mχ0
2

= C1 +
(

1

2
a− 1

6
C2

)1/2

−
[

−1

2
a− 1

3
C2 −

C3

(8a− 8C2/3)1/2

]1/2

ǫ3mχ0
3

= C1 −
(

1

2
a− 1

6
C2

)1/2

−
[

−1

2
a− 1

3
C2 +

C3

(8a− 8C2/3)1/2

]1/2

ǫ4mχ0
4

= C1 +
(

1

2
a− 1

6
C2

)1/2

+

[

−1

2
a− 1

3
C2 −

C3

(8a− 8C2/3)1/2

]1/2

(A9)
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where ǫi = ±1; the coefficients Ci and a are given by

C1 = (M1 +M2)/4

C2 = M1M2 −M2
Z − µ2 − 6C2

1

C3 = 2C1

[

C2 + 2C2
1 + 2µ2

]

+M2
Z(M1c

2
W +M2s

2
W ) − µM2

Z sin 2β

C4 = C1C3 − C2
1C2 − C4

1 −M1M2µ
2 + (M1c

2
W +M2s

2
W )M2

Zµ sin 2β (A10)

and

a =
1

21/3
Re

[

S + i
(

D

27

)1/2
]1/3

(A11)

with

S = C2
3 +

2

27
C3

2 −
8

3
C2C4

D =
4

27
(C2

2 + 12C4)
3 − 27S2 (A12)

In the limit of large |µ| values, the masses of the neutralino states simplify to

mχ0
1

≃ M1 −
M2

Z

µ2
(M1 + µ sin 2β) s2

W

mχ0
2

≃ M2 −
M2

Z

µ2
(M2 + µ sin 2β) c2W

mχ0
3

≃ |µ| + 1

2

M2
Z

µ2
ǫµ(1 − sin 2β)

(

µ+M2s
2
W +M1c

2
W

)

mχ0
4

≃ |µ| + 1

2

M2
Z

µ2
ǫµ(1 + sin 2β)

(

µ−M2s
2
W −M1c

2
W

)

(A13)

Again, for |µ| → ∞, two neutralinos are pure gaugino states with masses mχ0
1
≃ M1 ,

mχ0
2

= M2, while the two others are pure higgsino states, with masses mχ0
3
≃ mχ0

4
≃ |µ|.

The matrix elements of the diagonalizing matrix, Zij with i, j = 1, ..4, are given by

Zi1 =

[

1 +
(

Zi2

Zi1

)2

+
(

Zi3

Zi1

)2

+
(

Zi4

Zi1

)2
]−1/2

(A14)

Zi2

Zi1

= − 1

tan θW

M1 − ǫimχ0
i

M2 − ǫimχ0
i

Zi3

Zi1

=
µ(M1 − ǫimχ0

i
)(M2 − ǫimχ0

i
) −M2

Z sin β cos β[(M1 −M2)c
2
W +M2 − ǫimχ0

i
]

MZ(M2 − ǫimχ0
i
)sW [µ cosβ + ǫimχ0

i
sin β)

Zi4

Zi1
=

−ǫimχ0
i
(M1 − ǫimχ0

i
)(M2 − ǫimχ0

i
) −M2

Z cos2 β[(M1 −M2)c
2
W +M2 − ǫimχ0

i
]

MZ(M2 − ǫimχ0
i
)sW [µ cosβ + ǫimχ0

i
sin β)

where ǫi is the sign of the ith eigenvalue of the neutralino mass matrix, which in the large

|µ| limit are: ǫ1 = ǫ2 = 1 and ǫ4 = −ǫ3 = ǫµ.
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Appendix B: Sfermion Masses and Mixing

We now present the explicit expressions of the squark and slepton masses. We will assume

a universal scalar mass m0 and gaugino mass m1/2 at the GUT scale, and we will neglect
the Yukawa couplings in the RGE’s [see Appendix C]. For third generation squarks this

is a poor approximation since these couplings can be large; these have been taken into
account in the numerical analysis.

By performing the RGE evolution to the electroweak scale, one obtains for the left– and
right–handed sfermion masses at one–loop order [we include the full two–loop evolution

of the masses in the numerical analysis]

m2
f̃L,R

= m2
0 +

3
∑

i=1

Fi(f)m2
1/2 ± (T3f − efs

2
W )M2

Z cos 2β (B1)

T3f and ef are the weak isospin and the electric charge of the corresponding fermion f ,
and Fi are the RGE coefficients for the three gauge couplings at the scale Q ∼MZ , given

by

Fi =
ci(f)

bi



1 −
(

1 − αG

4π
bi log

Q2

M2
G

)−2


 (B2)

The coefficients bi, assuming that all the MSSM particle spectrum contributes to the

evolution from Q to the GUT scale MG, are

b1 = 33/5 , b2 = 1 , b3 = −3 (B3)

The coefficients c(f̃) = (c1, c2, c3)(f̃) depend on the hypercharge and color of the sfermions
[FL = LL or QL is the slepton or squark doublet]

c(L̃L) =







3/10
3/2
0





 , c(ẼR) =







6/5
0
0







c(Q̃L) =







1/30
3/2
8/3





 , c(ŨR) =







8/15
0

8/3





 , c(D̃R) =







2/15
0

8/3





 (B4)

With the input gauge coupling constants at the scale of the Z boson mass

α1(MZ) ≃ 0.01 , α2(MZ) ≃ 0.033 , α3(MZ) ≃ 0.118 (B5)

one obtains for the GUT scale MG and for the coupling constant αG

MG ∼ 1.9 × 1016 GeV and αG = 0.041 (B6)

57



Using these values, and including only gauge loops in the one–loop RGE’s, one obtains

for the left– and right–handed sfermion masses [39]

m2
ũL

= m2
0 + 6.28m2

1/2 + 0.35M2
Z cos(2β)

m2
d̃L

= m2
0 + 6.28m2

1/2 − 0.42M2
Z cos(2β)

m2
ũR

= m2
0 + 5.87m2

1/2 + 0.16M2
Z cos(2β)

m2
d̃R

= m2
0 + 5.82m2

1/2 − 0.08M2
Z cos(2β)

m2
ν̃L

= m2
0 + 0.52m2

1/2 + 0.50M2
Z cos(2β)

m2
ẽL

= m2
0 + 0.52m2

1/2 − 0.27M2
Z cos(2β)

m2
ẽR

= m2
0 + 0.15m2

1/2 − 0.23M2
Z cos(2β) (B7)

In the case of the third generation sparticles, left– and right–handed sfermions will
mix; for a given sfermion f̃ = t̃, b̃ and τ̃ , the mass matrices which determine the mixing

are
[

m2
f̃L

+m2
f mf (Af − µrf)

mf (Af − µrf) m2
f̃R

+m2
f

]

(B8)

where the sfermion masses mf̃L,R
are given above, mf are the masses of the partner

fermions and rb = rτ = 1/rt = tgβ. These matrices are diagonalized by orthogonal

matrices with mixing angles θf defined by

sin 2θf =
2mf(Af − µrf)

m2
f̃1
−m2

f̃2

, cos 2θf =
m2

f̃L
−m2

f̃R

m2
f̃1
−m2

f̃2

(B9)

and the masses of the squark eigenstates given by

m2
f̃1,2

= m2
f +

1

2

[

m2
f̃L

+m2
f̃R

∓
√

(m2
f̃L

−m2
f̃R

)2 + 4m2
f(Af − µrf)2

]

. (B10)

Appendix C: Renormalization Group Equations

Finally, we collect for completeness the renormalization group equations for the soft–

SUSY breaking parameters [the trilinear couplings, scalar masses as well as for µ and B],
including the dependence on At, Ab and Aτ . We restrict ourselves to the one–loop RGE’s

and we keep only the leading terms in the mass hierarchy in the MSSM with three fermion
generations. The complete expressions for the RGE’s can be found in Refs.[13,19].

For the trilinear couplings of the third generation sfermions, the RGE’s are given by

dAt

dt
=

2

16π2

(

∑

cig
2
iMi + 6λ2

tAt + λ2
bAb

)

dAb

dt
=

2

16π2

(

∑

c′ig
2
iMi + 6λ2

bAb + λ2
tAt + λ2

τAτ

)

dAτ

dt
=

2

16π2

(

∑

c′′i g
2
iMi + 3λ2

bAb + 4λ2
τAτ

)

(C1)
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while for the scalar masses of the third generation sfermions, one has

dM2
QL

dt
=

2

16π2

(

− 1

15
g2
1M

2
1 − 3g2

2M
2
2 − 16

3
g2
3M

2
3 + λ2

tXt + λ2
bXb

)

dM2
tR

dt
=

2

16π2

(

− 16

15
g2
1M

2
1 − 16

3
g2
3M

2
3 + 2λ2

tXt

)

dM2
bR

dt
=

2

16π2

(

− 4

15
g2
1M

2
1 − 16

3
g2
3M

2
3 + 2λ2

bXb

)

dM2
LL

dt
=

2

16π2

(

− 3

5
g2
1M

2
1 − 3g2

2M
2
2 + λ2

τXτ

)

dM2
τR

dt
=

2

16π2

(

− 12

5
g2
1M

2
1 + 2λ2

τXτ

)

(C2)

The evolution parameter is defined by t = log(Q/MG),

bi = ( 33/5 , 1 , −3 )

ci = ( 13/15 , 3 , 16/3 )

c′i = ( 7/15 , 3 , 16/3 )

c′′i = ( 9/5 , 3 , 0 ) (C3)

and

Xt = M2
QL

+M2
tR

+M2
H2

+ A2
t

Xb = M2
QL

+M2
bR

+M2
H1

+ A2
b

Xτ = M2
LL

+M2
τR

+M2
H1

+ A2
τ (C4)

For the first and second generation sfermions, these expressions reduce to

dAu

dt
=

2

16π2

(

∑

cig
2
iMi + λ2

tAt

)

dAd

dt
=

2

16π2

(

∑

c′ig
2
iMi + λ2

bAb +
1

3
λ2

τAτ

)

dAe

dt
=

2

16π2

(

∑

c′′i g
2
iMi + λ2

bAb +
1

3
λ2

τAτ

)

(C5)

and

dM2
qL

dt
=

2

16π2

(

− 1

15
g2
1M

2
1 − 3g2

2M
2
2 − 16

3
g2
3M

2
3

)

dM2
uR

dt
=

2

16π2

(

− 16

15
g2
1M

2
1 − 16

3
g2
3M

2
3

)

dM2
dR

dt
=

2

16π2

(

− 4

15
g2
1M

2
1 − 16

3
g2
3M

2
3

)

dM2
lL

dt
=

2

16π2

(

− 3

5
g2
1M

2
1 − 3g2

2M
2
2

)

dM2
eR

dt
=

2

16π2

(

− 12

5
g2
1M

2
1

)

(C6)
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For the gauge coupling constants and the other soft–SUSY breaking parameters, the

RGE’s are given by

dgi

dt
=

1

16π2
big

3
i (C7)

dMi

dt
=

2

16π2
big

2
iMi (C8)

dB

dt
=

2

16π2

(3

5
g2
1M1 + 3g2

2M2 + 3λ2
bAb + 3λ2

tAt + λ2
τAτ

)

(C9)

dµ

dt
=

µ

16π2

(

− 3

5
g2
1 − 3g2

2 + 3λ2
t + 3λ2

b + λ2
τ

)

(C10)

dm2
H1

dt
=

2

16π2

(

− 3

5
g2
1M

2
1 − 3g2

2M
2
2 + 3λ2

bXb + λ2
τXτ

)

(C11)

dm2
H2

dt
=

2

16π2

(

− 3

5
g2
1M

2
1 − 3g2

2M
2
2 + 3λ2

tXt

)

(C12)
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927; 71 (1984) 413; L. E. Ibañez and G. G. Ross, Phys. Lett. B110 (1982) 215;
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Fig. 1: Masses of the CP–even Higgs bosons h,H and of the charged Higgs particles H±

as a function of MA for two values of tgβ = 1.75 and 50; the common squark mass MS at
the weak scale is fixed to MS = 1 TeV and we take µ = At = 0.
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Fig. 2: The correlation between m0 and m1/2 for tgβ = 1.75 and three values of MA =
300, 600 and 900 GeV. The non-solid lines show the boundaries which can be excluded by

including the experimental bounds from LEP1.5 and Tevatron.
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Fig. 3a: The masses of the Higgs bosons as a function of m1/2 for tgβ = 1.75, for the

two values m0 = 100 and 500 GeV and both signs of µ.
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Fig. 3b: The masses of the two charginos (dashed lines) and the four neutralinos (solid

lines) as a function of m1/2 for tgβ = 1.75, MA = 300 and 600 GeV and for both signs of
µ. The chargins/neutralinos are ordered with increasing masses.
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Fig. 3c: The masses of the two stop (solid lines), sbottom (dotted lines) and first/second

generation squark (dashed lines) eigenstates as a function of m1/2 for tgβ = 1.75, MA =

300 and 600 GeV and for both signs of µ.
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Fig. 3d: The masses of the charged sleptons (solid and dotted lines) and the sneutrino

(dashed lines) of the three generations as a function of m1/2 for tgβ = 1.75, MA = 300
and 600 GeV and for both signs of µ.
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Fig. 4: The correlation between m0 and m1/2 for tgβ ≃ 50, µ < 0, and two values

of MA = 300 and 600 GeV. The boundary contours correspond to tachyonic solutions,
m2

τ̃ < 0, M2
A < 0 and M2

h < 0 at the tree–level.
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Fig. 5a: Cross sections for the pair production processes e+e− → HA and e+e− → H+H−

as a function of
√
s for tgβ = 1.75 (solid lines) and tgβ = 50 (dashed lines) and three

values of MA = 300, 600 and 900 GeV.
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Fig. 5b: Cross sections for the production processes e+e− → HZ, e+e− → hA and

e+e− → Hνν̄ as a function of
√
s for tgβ = 1.75 and the values MA = 300 and 600 GeV.
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Fig. 6a: Decay widths (in GeV) of the heavy CP–even Higgs boson H into charginos and
neutralinos (dotted lines), squarks (dashed lines), sleptons (dash–dotted lines), standard

particles (dott–long–dashed lines) and the total decay widths (solid lines) as a function
of m1/2 for tgβ = 1.75, MA = 300 and 600 GeV and for both signs of µ.
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Fig. 6b: Partial decay widths (in GeV) of the heavy CP–even Higgs boson H into
all combinations of chargino and neutralino pairs [ij ≡ χiχj] as a function of m1/2 for

tgβ = 1.75, MA = 600 GeV and for both signs of µ.
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Fig. 6c: Partial decay widths (in GeV) of the heavy CP–even Higgs boson H into stop
and sbottom squarks and into slepton pairs as a function ofm1/2 for tgβ = 1.75, MA = 600

GeV and for both signs of µ.
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Fig. 7a: Decay widths (in GeV) of the pseudoscalar Higgs boson A into charginos and
neutralinos (dotted lines), stop squarks (dashed lines), standard particles (dott–long–

dashed lines) and the total decay widths (solid lines) as a function of m1/2 for tgβ = 1.75,
MA = 300 and 600 GeV and for both signs of µ.

75



Fig. 7b: Partial decay widths (in GeV) of the pseudoscalar Higgs boson A into all
combinations of chargino and neutralino pairs [ij ≡ χiχj ] as a function of m1/2 for tgβ =

1.75, MA = 600 GeV and for both signs of µ.
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Fig. 8a: Decay widths (in GeV) of the charged Higgs bosons into charginos and neutrali-
nos (dotted lines), squarks (dashed lines), sleptons (dash–dotted lines), standard particles

(dott–long–dashed lines) and the total decay widths (solid lines) as a function of m1/2 for
tgβ = 1.75, MA = 300 and 600 GeV and for both signs of µ.
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Fig. 8b: Partial decay widths (in GeV) of the charged Higgs boson H± into all combi-

nations of charginos and neutralinos [ij ≡ χ+
i χ

0
j ] as a function of m1/2 for tgβ = 1.75,

MA = 600 GeV and for both signs of µ.
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Production of Heavy Neutral MSSM Higgs Bosons

a complete 1-loop calculation.

V. Driesen, W. Hollik and J. Rosiek∗

Institut für Theoretische Physik, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Abstract

The complete 1-loop diagrammatic calculations of the cross sections for the
neutral Higgs production processes e+e− → Z0H0(Z0h0) and e+e− → A0H0(A0h0)
in the MSSM are presented and compared the with the corresponding results of the
simpler and compact effective potential approximation.

1. Introduction

In order to experimentally detect possible signals of the neutral MSSM Higgs bosons,
detailed studies for the decay and production processes of Higgs boson are required. As
has been discovered several years ago [1-3], radiative corrections in the MSSM Higgs sector
are large and have to be taken into account for phenomenological studies. Three main
approaches have been developed to calculate the 1-loop radiative corrections to the MSSM
Higgs boson masses, production and decay rates:

a) The Effective Potential Approach (EPA) [2].

b) The Renormalization Group approach (RGE) [3].

c) The diagrammatic calculation in the on-shell renormalization scheme (Feynman
Diagram Calculation, FDC) [4,5]: The masses are calculated from the pole positions
of the Higgs propagators, and the cross sections are obtained from the full set of
1-loop diagrams contributing to the amplitudes, including [4]:

– the most general form of the MSSM lagrangian with soft breaking terms,

– the virtual contributions from all the particles of the MSSM spectrum,

– all 2-, 3- and 4-point Green’s functions for a given process with Higgs particles,

– the momentum dependence of the Green’s functions,

– the leading reducible diagrams of higher orders corrections.

The experimental searches for Higgs bosons at LEP1 [6] and studies for the fu-
ture searches at higher energies [7] conventionally make use of the most compact ef-
fective potential approximation. We present the complete 1-loop diagrammatic results
for the cross sections for the neutral Higgs production processes e+e− → Z0H0(Z0h0)
and e+e− → A0H0(A0h0), compare them with the corresponding ones of the simpler and
compact EPA approximation and discuss the typical size of the differences.

∗Supported in part by the Alexander von Humboldt Stiftung and by the Polish Committee for Scientific
Research.
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2. Outline of the calculations

The tree level potential for the neutral MSSM Higgs bosons can be written as:

V (0) = m2
1H

2
1 +m2

2H
2
2 + ǫij(m

2
12H

i
1H

j
2 +H.c.) +

g2 + g′2

8
(H2

1 −H2
2 )2 +

g2

4
(H1H2)

2 (1)

Diagonalization of the mass matrices following from the potential (1) leads to three phys-
ical particles: two CP-even Higgs bosons H0 , h0 and one CP-odd Higgs boson A0 , and
defines their tree-level masses mH , mh and mA , with mH > mh , and the mixing angles
α, β. The way of calculating the radiative corrections in the EPA and FDC methods is
briefly described as follows:

In the EPA, the tree level potential V (0) is improved by adding the 1-loop terms [2]:

V (1)(Q2) = V (0)(Q2) +
1

64π2

∑

quarks

squarks

StrM4

(

log
M2

Q2
− 3

2

)

(2)

Figure 1: Classes of diagrams contributing to the e+e− → Z0h0(H0) process in the FDC
approach.

where V (0)(Q2) is the tree level potential evaluated with couplings renormalized at the
scale Q2, and Str denotes the supertrace over the third generation of quark and squark
fields contributing to the generalized mass matrix M2. The 1-loop potential V (1) is
rediagonalized yielding the 1-loop corrected physical masses MH , Mh and the effective
mixing angle αeff (for explicit formulae see [2]).

In the FDC the 1-loop physical Higgs boson masses are obtained as the pole positions of
the dressed scalar propagators. M2

H and M2
h are given by the solution of the equation (3).

For the calculations of the cross sections we need the full set of 2-, 3- and 4-point functions.
In Fig. 1 the diagrams contributing to the e+e− → Z0h0(H0) process are collected. The
diagrams contributing to the e+e− → A0h0(H0) process can be obtained by changing Z0

into A0 on the external line and skipping the diagrams i), j).

Re
[(

p2 −m2
h − Σhh(p

2)
) (

p2 −m2
H − ΣHH(p2)

)

− Σ2
hH(p2)

]

= 0 (3)

The formulae for the cross sections obtained in the FDC differ from the Born expres-
sions, because not only the effective masses are corrected but also new form factors and
momentum dependent effects are considered (see [4] for a detailed description).
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3. Results on production cross sections

In this section we present the results for Z0H0(Z0h0) and A0H0(A0h0) production
from the FDC and discuss the quality of simpler EPA approximation. In all figures we
use as an example the set of parameters listed in Table 1. µ is the parameter describing the
Higgs doublet mixing in the MSSM superpotential. M2 denotes the SU(2) gaugino mass
parameter. For the U(1) gaugino mass we use the value M1 = 5

3
tan2 θWM2, suggested

by GUT constraints. Msq,Msl, At and Ab are the parameters entering the sfermion mass
matrices (for the detailed expressions see e.g. [8]). For simplicity we assume a common
value Msq for all generations of squarks, and a common Msl for sleptons.

Parameter mt MA Msq Msl M2 µ At = Ab

Value (GeV) 175 200 1000 300 1000 500 1000

Table 1: Parameters used for the numerical analysis.

From the theoretical point of view, the most convenient parameters for the Higgs
sector are the mass MA of the CP-odd Higgs boson and the ratio tanβ = v2

v1
. From the

experimental point of view it is more natural to use, depending on the process considered,
the masses Mh or MH of the CP-even Higgs instead of the formal quantity tanβ.

As a first step, we apply the conventional MA , tanβ parameterization. Figs. 2
and 3 show the production cross sections for the processes σ(e+e− → Z0h0, A0h0) and
σ(e+e− → Z0H0, A0H0) for

√
s = 500 GeV. For the chosen set of parameters the numer-

ical differences can reach 30% at
√
s = 500 GeV. They become more important with

Figure 2: Comparison of the cross sections σ(e+e− → Z0h0, A0h0) obtained in the EPA and

FDC. Parameters as given in Table 1,
√

s = 500 GeV.

81



Figure 3: Comparison of the cross sections σ(e+e− → Z0H0, A0H0) obtained in the EPA and

FDC. Parameters as given in Table 1,
√

s = 500 GeV.

increasing energies, exceeding 40% at 1 TeV. Note, however, that in the region of large
cross sections the EPA accuracy is better (20% at 500 GeV). More detailed discussion of
the lighter CP-even Higgs boson production can be found in ref. [9].

Fig. 4 shows the production cross sections for the processes σ(e+e− → Z0H0, A0H0)
as a function of

√
s . The effect of the additional form factors included in the FDC grows

when center-of-mass energy increases. For
√
s = 1.5 TeV the differences between FDC

and EPA can reach 50% for the σ(e+e− → Z0H0) production channel. In addition, the
angular dependence of the cross section given by the FDC is modified in compare to the
effective Born approximation.

We now turn to the more physical parameterization of the cross sections in terms of the
two Higgs boson masses MA and Mh or MH . This parameterization is more clumsy in the
calculations, but it has the advantage of physically well defined input quantities avoiding
possible confusions from different renormalization schemes. Varying MH (MA and other
input quantities fixed) we obtain tanβ and σZH , σAH as functions of MH . For the
parameter values given in Table 1, the differences between the tanβ values obtained in
the EPA and FDC can reach 10% (up to 20% for smaller MA ≈ 100 GeV). Also significant
differences can occur for the cross sections, as displayed in Fig. 5 where the predictions of
EPA and FDC for the σZH and σAH are plotted as functions of MH . The typical size of
differences between the methods is 10-20% for

√
s = 500 GeV, but they may became as

large as 60% in case of the process σ(e+e− → Z0H0). This particularly large deviation
occurs for large MH values, corresponding to small tanβ ≤ 1 (compare Fig. 2).

We have analyzed also the dependence of the differences between the EPA and the
FDC predictions on the SUSY parameters: sfermion and gaugino masses, µ parameter
and sfermion mixing parameters. In most cases the variation of those parameters does
not have a large effect on the size of the differences between the EPA and FDC (a more
detailed discussion can be found in ref. [10]).

To give a more global impression of the typical size of the differences between the EPA
and FDC results, we have chosen 1000 random points (for each

√
s value in Table 2) from

82



the hypercube in the MSSM parameters space with the following bounds:

0.5 < tanβ < 50 50 GeV < MA < 250 GeV
-500 GeV < µ < 500 GeV 200 GeV < M2 < 1000 GeV
200 GeV < Msq = 2Msl < 1000 GeV −Msq < At = Ab < Msq

We define the relative differences for the masses and cross sections as follows:

δXEPA =
XFDC −XEPA

XFDC
. (4)

where X can be chosen as Mh , MH , σZH , σZh, σAH or σAh.
We calculated the quantities δMEPA

h , δMEPA
H , δσEPA

Zh , δσEPA
Ah , δσEPA

ZH and δσEPA
AH and

averaged them (and also their absolute values) arithmetically over all generated points of
the parameter space. The average mass differences are small and equal |δMEPA

h | = 2%
and |δMEPA

H | = 1%. The results for the cross sections are summarized in Table 2. It
shows that the predictions of both methods deviate in particular for σZH .

√
s (GeV) δσEPA

Zh δσEPA
Ah δσEPA

ZH δσEPA
AH |δσEPA

Zh | |δσEPA
Ah | |δσEPA

ZH | |δσEPA
AH |

500 16.4% -2.4% 57% 4.4% 21% 31% 62% 14%
1000 10.3% 1.1% 56% -3.0% 15% 31% 62% 14%
1500 4.2% 4.9% 53% -9.0% 17% 32% 63% 18%

Table 2: Differences between the EPA and FDC predictions averaged over a random sample of

parameters.

Summarizing, comparisons between the FDC predictions with the simpler EPA ap-
proximation have shown that at

√
s = 500 GeV the EPA has an accuracy of typically

10-20% in the parameter regions where the cross sections are large. The differences be-
come larger with increasing energy, where also modifications of the Born-like angular
distributions are more visible. The use of the physical input variables MA, Mh or MA,
MH avoids ambiguities from the definition of tanβ in higher order, but the observed dif-
ferences remain of the same size. For a better accuracy, the full FDC would be required.

Recently some papers on the leading 2-loop corrections to the CP-even MSSM Higgs
boson masses have been published [11]. The main conclusion is that 2-loop corrections
are also significant and tend to compensate partially the effects of 1-loop corrections. The
calculations are based on the EPA and RG methods. Since the main emphasis of this
study is to figure out the difference between complete and approximate results in a given
order, we have not implemented the 2-loop terms. They would improve the 1-loop FDC
results in the same way as the approximations and thus do not influence the remaining
differences which can only be obtained by an explicit diagrammatic calculation.

The library of FORTRAN codes for the calculation of the 1-loop radiative corrections
in the on-shell renormalization scheme to the MSSM neutral Higgs production and decay
rates [4] can be found at the URL address:
http://itpaxp1.physik.uni-karlsruhe.de/∼rosiek/neutral higgs.html
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Figure 4: Comparison of the cross sections σ(e+e− → Z0H0, A0H0) as a function of√
s obtained in the EPA and FDC. tanβ = 2, other parameters as given in Table 1.

Figure 5: Comparison of the cross sections σ(e+e− → Z0H0, A0H0) as a function of MH in

the EPA and FDC. Parameters as given in Table 1,
√

s = 500 GeV.
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Abstract

We discuss the one-loop electroweak corrections to the pair production of charged
Higgs bosons e+e− → H+H− in the Minimal Supersymmetric Standard Model.

In contrast to hadronic machines, a high energy e+e− collider in the TeV range will
be a rather unique place to discover and study charged higgses in a clean environment.
These would be produced either in pairs [1], our main concern here, or in associate (rare)
production with W±. It was first found in [2] that loop corrections from matter fermions
and their susy partners (mainly the (t, b), (b̃, t̃) sector), are likely to change the tree-level
result at

√
s = 500 GeV [1,3], by asmuch as 10% dip in the cross-section.The effect could

even lie between −25% and 25% and perhaps grow out of perturbative control, though
in a reasonable range of the model-parameters. Such a sensitivity to loop effects appears
to be related to the fact that at tree-level the γ and Z mediated process is exclusively
controlled by UB(1) × UW3

(1) gauge invariance and thus knows nothing about the non-
standard extension whatsoever.

The aim of the present study is to improve on the previous one by including: a) the
complete Higgs sector contributions (self-energies, vertices and boxes), b) the infrared
part, including initial and final soft photon radiation as well as γγ and γZ boxes, c) The
complete set of charginos/neutralinos/ẽ/ν̃ box diagrams, and thus to identify the various
origins of large effects, whether in the MSSM or in a type II two-Higgs-doublet model
(THDM-II).

It turns out that besides the sensitivity to the heavy quark-squark sector there are, on
one hand large effects from the soft photon radiation and on the other, possibly important
effects in the purely Higgs sector. The latter case occurs when deviations from the tree-
level supersymmetric H+H−−H0(h0) couplings are allowed bringing in increasingly large
effects for increasing values of tan β at a given

√
s. To quantify such effects we thus allow

for a general deviation from the supersymmetric relations among the bare parameters of
the Higgs potential as follows :

λ1 = λ2 + δ12 , λ3 =
1

8
(g2 + g′2) − λ1 + δ31

λ4 = 2λ1 −
1

2
g′2 + δ41 , λ5 = −1

2
(g2 + g′2) + 2λ1 + δ51 (1)

λ6 = −1

2
(g2 + g′2) + 2λ1 + δ61
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The λ′is are as defined in [4] and the (softly broken) susy case corresponds to δi = 0. Eq.(1)
translates in a definite way into deviations from the MSSM tree-level relations among the
higgs masses, tan 2α and tanβ, as well as the couplings of the higgs sector, leading to
6 free parameters. However, one can find conditions relating the δ′s in such a way to
preserve these relations even in a non-susy case. These conditions which we dub “quasi-
susy”, are certainly not generic but constitute a good ground to test minimal deviations
from the MSSM in a simple way, since one then has just one extra free parameter (ex.
λ3) besides tan β and MH± in the higgs sector. In quasi-susy the only deviations from the
MSSM tree-level triple Higgs couplings that contribute to one-loop order in our case are
in H+ −H− − (H0, h0). For large tanβ these couplings behave as:

(H+H−(H0, h0))susy − igMW (cos(β − α)∆(1,2) + (1 ∓ cos(2α))cos(α)tan(β)∆3 (2)

the ∆′s being functions of the δ′s of eq.(1), and vanish in the MSSM.
Fig.1 illustrates how the Higgs sector contributions can counterbalance those of the

heavy quarks found in [2] for large tan(β), but only near threshold. Far from thresh-
old most of the effects become again negative, except for WW boxes. Furthermore the
“neutral” model-independent contributions, including soft bremsstrahlung, obtained by
adding one photon (or Z) line to the tree diagrams depend loosely on MH± or

√
s and

contribute at the level of −17% for ∆Eγ ∼ 0.1Ebeam. In Fig.2 we show (excluding those
“neutral” contributions) the integrated cross-section for two values of MH± and tan(β).
In THDM-II the total loop effect increases (negatively) with increasing tan(β), the far-
ther one goes from production threshold. In the MSSM (λ3 = λ3susy ) the leading effects
come exclusively from the heavy quark-squark sector and the conclusions of [2] remain
unaltered in this case. [For instance the 150 boxes involving χ±/χ0/ẽ/ν̃ largely cancel
among each other leading at most to 1 − 3% effect for a wide range of sparticle masses.]
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A.Djouadi, J.Kalinowski, P.M.Zerwas, ibid. p.83 and Z.Phys.C57 (1993) 569.

4. J.F.Gunion and H.E.Haber, Nucl. Phys. B272 (1986) 1.
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Fig.1: Contributions in % to the integrated cross section in quasi-susy, λ3 = −0.61,MH± =

220i GeV; a) Higgs sector, tan β = 2; b) Higgs sector, tan β = 30; c) virtual Z, γ and soft

bremsstrahlung; d) virtual W boxes; e) matter fermion sector, mtop = 180GeV, tan β = 30; f)

same as e) but with tan β = 2.

Fig.2: a) Tree-level, MH± = 220GeV ; b) quasi-susy, λ3 = −0.61 (MSSM value −0.71), tan β =

30; c) quasi-susy, λ3 = −0.61, tan β = 2; d) Tree-level, MH± = 430GeV ; e) quasi-susy, λ3 = −2.6

(MSSM value −2.84), tan β = 30; f) same as e) but with tan β = 2; mtop = 180GeV .
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Abstract

The cross sections for the multiple production of the lightest neutral Higgs
boson at high–energy e+e− colliders are presented in the framework of the
Minimal Supersymmetric extension of the Standard Model (MSSM). We
consider production through Higgs–strahlung, associated production of the
scalar and the pseudoscalar bosons, and the fusion mechanisms for which
we use the effective longitudinal vector–boson approximation. These cross
sections allow one to determine trilinear Higgs couplings λHhh and λhhh, which
are theoretically determined by the Higgs potential.

1. Introduction

The only unknown parameter in the Standard Model (SM) is the quartic coupling of the
Higgs field in the potential, which determines the value of the Higgs mass. If the Higgs
mass is known, the potential is uniquely fixed. Since the form of the Higgs potential is
crucial for the mechanism of spontaneous symmetry breaking, i.e. for the Higgs mech-
anism per se, it will be very important to measure the coefficients in the potential once
Higgs particles have been discovered.

If the mass of the scalar particle is less than about 150 GeV, it very likely belongs
to the quintet of Higgs bosons, h,H,A,H± predicted in the two–doublet Higgs sector
of supersymmetric theories [1] [h and H are the light and heavy CP–even Higgs bosons,
A is the CP–odd (pseudoscalar) Higgs boson, and H± is the charged Higgs pair]. The
potential of the two doublet Higgs fields, even in the Minimal Supersymmetric Standard
Model (MSSM), is much more involved than in the Standard Model [2]. If CP is
conserved by the potential, the most general two–doublet model contains three mass
parameters and seven real self–couplings. In the MSSM, the potential automatically

∗Supported by Deutsche Forschungsgemeinschaft DFG (Bonn).
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conserves CP; in addition, supersymmetry fixes all the Higgs self–couplings in terms of
gauge couplings. The remaining three free mass parameters can be traded in for the two
vacuum expectation values (VEV’s) of the neutral Higgs fields and one of the physical
Higgs masses. The sum of the squares of the VEV’s is fixed by the W mass, while the
ratio of VEV’s is a free parameter of the model called tanβ . It is theoretically convenient
to choose the free parameters of the MSSM Higgs sector to be tanβ and MA, the mass
of the CP–odd Higgs boson A. The other Higgs masses and the mixing angle α of the
CP–even neutral sector are then determined. Moreover, since all coefficients in the Higgs
potential are also determined, the trilinear and quartic self–couplings of the physical Higgs
particles can be predicted theoretically. By measuring these couplings, the Higgs potential
can be reconstructed – an experimental prima facie task to establish the Higgs mechanism
as the basic mechanism for generating the masses of the fundamental particles.

The endeavor of measuring all Higgs self–couplings in the MSSM is a daunting task.
We will therefore discuss a first step by analyzing theoretically the production of two light
Higgs particles of the MSSM. These processes may be studied at the proton collider
LHC [3] and at a high–energy e+e− linear collider. In this paper we will focus on the
e+e− accelerators that are expected to operate in the first phase at an energy of 500 GeV
with a luminosity of about

∫ L = 20 fb−1, and in a second phase at an energy of about
1.5 TeV with a luminosity of order

∫ L = 200 fb−1 per annum [4]. They will allow us to
eventually study the couplings λHhh and λhhh. The measurement of the coupling λhAA

will be very difficult.

Multiple light Higgs bosons h can [in principle] be generated in the MSSM by four
mechanisms1:

(i) Decay of the heavy CP–even neutral Higgs boson, produced either by H–strahlung
and associated AH pair production, or in the WW fusion mechanisms, Fig. 1a,

e+e− → ZH, AH
e+e− → νeν̄eH

}

H → hh (1)

Associated production e+e− → hA followed by A→ hZ decays leads to hhZ background
final states.

(ii) Double Higgs–strahlung in the continuum, with a final state Z boson, Fig. 1b,

e+e− → Z∗ → hhZ (2)

(iii) Associated production with the pseudoscalar A in the continuum, Fig. 1c,

e+e− → Z∗ → hhA (3)

(iv) Non–resonant WW (ZZ) fusion in the continuum, Fig. 1d,

e+e− → ν̄eνeW
∗W ∗ → ν̄eνehh (4)

1The production of two light Higgs bosons, e+e− → hh, through loop diagrams does not involve any
trilinear Higgs coupling; the production rates are rather small [5].
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The cross sections for ZZ fusion in (1) and (4) are suppressed by an order of magnitude.
The largest cross sections can be anticipated for the processes (1), where heavy on–shell
H Higgs bosons decay into pairs of the light Higgs bosons. [Cross sections of similar
size are expected for the backgrounds involving the pseudoscalar Higgs bosons.] We have
derived the cross sections for the four processes analytically; the fusion process has been
treated in the equivalent particle approximation for longitudinal vector bosons.

We will carry out the analysis in the MSSM for the value tanβ = 1.5. [A summary
will be given in the last section for all values of tanβ ]. In the present exploratory
study, squark mixing will be neglected, i.e. the supersymmetric Higgs mass parameter
µ and the parameter At in the soft symmetry breaking interaction will be set to zero,
and the radiative corrections will be included in the leading m4

t one–loop approximation
parameterized by [6]

ǫ =
3GF√
2π2

m4
t

sin2 β
log

(

1 +
M2

S

m2
t

)

(5)

with the common squark mass fixed to MS = 1 TeV. In terms of tan β and MA, the
trilinear Higgs couplings relevant for our analysis are given in this approximation by

λhhh = 3 cos 2α sin(β + α) + 3
ǫ

M2
Z

cos3 α

sin β
(6)

λHhh = 2 sin 2α sin(β + α) − cos 2α cos(β + α) + 3
ǫ

M2
Z

sinα

sin β
cos2 α

In addition, the coupling

λhAA = cos 2β sin(β + α) +
ǫ

M2
Z

cosα

sin β
cos2 β (7)

will be needed even though it turned out – a posteriori – that it cannot be measured using
the experimental methods discussed in this note2. As usual, these couplings are defined
in units of (2

√
2GF )1/2M2

Z ; the h,H,H± masses and the mixing angle α can be expressed
in terms of MA and tan β [see e.g. Ref. [8] for a recent discussion].

In the decoupling limit [9] for large A, H and H± masses, the lightest Higgs particle
becomes SM–like and the trilinear hhh coupling approaches the SM value λhhh →
M2

h/M
2
Z . In this limit, only the first three diagrams of Fig. 1b and 1d contribute and the

cross-sections for the processes e+e− → hhZ and WW → hh approach the corresponding
cross sections of the SM [10,11].

2. H Production and hh Decays

If kinematically allowed, the most copious source of multiple h final states are cascade
decays H → hh, withH produced either by Higgs–strahlung or associated pair production

2For small masses the decay h → AA could have provided an experimental opportunity to measure
this coupling. However, for tanβ > 1, this area of the MSSM parameter space is excluded by LEP [7].
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[1],

σ(e+e− → ZH) =
G2

FM
4
Z

96πs
(v2

e + a2
e) cos2(β − α)

λ
1/2
Z [λZ + 12M2

Z/s]

(1 −M2
Z/s)

2
(8)

σ(e+e− → AH) =
G2

FM
4
Z

96πs
(v2

e + a2
e) sin2(β − α)

λ
3/2
A

(1 −M2
Z/s)

2
(9)

The Z couplings to electrons are given by ae = −1, ve = −1 + 4 sin2 θW and λj is the
usual two–body phase space function λj = (1−M2

j /s−M2
H/s)

2 − 4M2
j M

2
H/s

2. The cross
sections (8) and (9) are shown in Fig. 2 for the total e+e− energies

√
s = 500 GeV and

1.5 TeV as a function of the Higgs mass MH for a small value of tanβ = 1.5 where the H
cascade decays are significant over a large mass range. As a consequence of the decoupling
theorem, associated AH production is dominant for large Higgs masses.

The trilinear Hhh coupling can be measured in the decay process H → hh

Γ(H → hh) =
GFλ

2
Hhh

16
√

2π

M4
Z

MH

(

1 − 4M2
h

M2
H

)1/2

(10)

if the branching ratio is neither too small nor too close to unity. This is indeed the case,
as shown in Fig. 3a, for H masses between 180 and 350 GeV and small to moderate tanβ
values. The other important decay modes are WW ∗/ZZ∗ decays. Since the H couplings
to the gauge bosons can be measured through the production cross sections of the fusion
and Higgs–strahlung processes, the branching ratio BR(H → hh) can be exploited to
measure the coupling λHhh.

The ZH final state gives rise to resonant two–Higgs [hh] final states. The AH final
state typically yields three Higgs h[hh] final states since the channel A → hZ is the
dominant decay mode in most of the mass range we consider. This is shown in Fig. 3b
where the branching ratios of the pseudoscalar A are displayed for tanβ = 1.5.

Another type of two–Higgs hh final states is generated in the chain e+e− → Ah →
[Zh]h, which does not involve any of the Higgs self–couplings. However, in this case, the
two h bosons do not resonate while [Zh] does, so that the topology of these background
events is very different from the signal events. The size of the e+e− → hA background
cross section is shown in Fig. 2 together with the signal cross sections; for sufficiently
large MA, it becomes small, in line with the decoupling theorem [9].

A second large signal cross section is provided by the WW fusion mechanism. [Since
the NC couplings are smaller compared to the CC couplings, the cross section for the ZZ
fusion processes in (1) and (4) is ∼ 16 cos4 θW , i.e. one order of magnitude smaller than
for WW fusion.] In the effective longitudinal W approximation [12] one obtains

σ(e+e− → Hν̄eνe) =
G3

FM
4
W

4
√

2π

[(

1 +
M2

H

s

)

log
s

M2
H

− 2

(

1 − M2
H

s

)]

cos2(β − α) (11)
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The magnitude of the cross section3 e+e− → Hνeν̄e is also shown in Fig. 2 for the two
energies

√
s = 500 GeV and 1.5 TeV as a function of the Higgs mass MH and for tanβ =

1.5. The signals in e+e− → [hh] + missing energy are very clear, competing only with
H–strahlung and subsequent neutrino decays of the Z boson. Since the lightest Higgs
boson will decay mainly into bb̄ pairs, the final states will predominantly include four and
six b quarks.

At
√
s = 500 GeV, about 500 signal events are predicted in the mass range of MH ∼

200 GeV for an integrated luminosity of
∫ L = 20 fb−1 per annum; and at

√
s = 1.5 TeV,

about 8,000 to 1,000 signal events for the prospective integrated luminosity of
∫ L = 200

fb−1 per annum in the interesting mass range between 180 and 350 GeV. Note that for
both energies, the Ah background cross section is significantly smaller.

3. Non-Resonant Double hh Production

The double Higgs–strahlung e+e− → Zhh, the triple Higgs production process e+e− →
Ahh and the WW fusion mechanism e+e− → νeν̄ehh outside the resonant H → hh
range are disfavored by an additional power of the electroweak coupling compared to the
resonance processes. Nevertheless, these processes must be analyzed carefully in order to
measure the value of the hhh coupling.

3.1 e+e− → Zhh

The double differential cross section of the process e+e− → hhZ, Fig. 1b, is given by

dσ(e+e− → hhZ)

dx1dx2
=

G3
FM

6
Z

384
√

2π3s
(a2

e + v2
e)

A
(1 − µZ)2

(12)

The couplings have been defined in the previous section. x1,2 = 2E1,2/
√
s are the scaled

energies of the Higgs particles, x3 = 2 − x1 − x2 is the scaled energy of the Z boson;
yk = 1 − xk. The scaled masses squared are denoted by µi = M2

i /s. In terms of these
variables, the coefficient A in the cross section may be written as:

A =

{

a2

2
f0 +

sin4(β − α)

4µ2
Z(y1 + µh − µZ)

[

f1

y1 + µh − µZ
+

f2

y2 + µh − µZ

]

+
cos4(β − α)

4µ2
Z(y1 + µh − µA)

×
[

f3

y1 + µh − µA
+

f4

y2 + µh − µA

]

+
a

µZ

[

sin2(β − α)f5

y1 + µh − µZ
+

cos2(β − α)f6

y1 + µh − µA

]

+
sin2 2(β − α)

8µ2
Z(y1 + µh − µZ)

[

f7

y1 + µh − µZ

+
f8

y2 + µh − µZ

]}

+ {y1 ↔ y2} (13)

with

a =
1

2

[

sin(β − α)λhhh

y3 + µZ − µh
+

cos(β − α)λHhh

y3 + µZ − µH

]

+
sin2(β − α)

y1 + µh − µZ
+

sin2(β − α)

y2 + µh − µZ
+

1

2µZ
(14)

3In the effective W approximation, the cross section may be overestimated by as much as a factor of 2
for small masses and/or small c.m. energies. Therefore we display the exact cross sections [13] in Fig.2.
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[omitting the small decay widths of the Higgs bosons]. Only the coefficient a includes
the Higgs self–couplings λHhh and λhhh. Introducing the notation y0 = (y1 − y2)/2, the
coefficients fi which do not involve any Higgs couplings, are defined by

f0 = (y1 + y2)
2 − 4µZ(1 − 3µZ) (15)

f1 =
[

(1 + y1)
2 − 4µZ(y1 + µh)

] [

y2
1 + µ2

Z − 2µZ(y1 + 2µh)
]

f2 = [2µZ(µZ − 2µh + 1) − (1 + y1)(1 + y2)] [µZ(µZ − y1 − y2 − 4µh + 2) − y1y2]

f3 =
[

y2
0 + µZ(1 − y1 − y2 + µZ − 4µh)

] [

1 + y1 + y2 + y2
0 + µZ(µZ − 4µh − 2y1)

]

f4 =
[

y2
0 + µZ(1 − y1 − y2 + µZ − 4µh)

] [

y2
0 − 1 + µZ(µZ − y1 − y2 − 4µh + 2)

]

f5 = 2µ3
Z − 4µ2

Z(y1 + 2µh) + µZ [(1 + y1)(3y1 − y2) + 2] − y2
1(1 + y1 + y2) − y1y2

f6 = 2µ3
Z − µ2

Z(y2 + 3y1 + 8µh − 2) + 2µZy0 (1 + y1 + y0) + 2y1y0 − y2
0(y1 + y2 − 2)

f7 = [µZ(4µh − µZ − 1 + 2y1 − y0) − y1y0] [µZ(4µh − µZ − 1 + 3y1) − (1 + y0)(1 + y1)]

f8 = [µZ(4µh − µZ − 1 + 2y1 − y0) − y1y0] [µZ(4µh − µZ − 2 + y1) + (1 − y0)(1 + y1)]

In the decoupling limit, the cross section is reduced to the SM cross section for which

A =
a2

2
f0 +

1

4µ2
Z(y1 + µh − µZ)

[

f1

y1 + µh − µZ

+
f2

y2 + µh − µZ

+ 4aµZf5

]

+ {y1 ↔ y2}

with the fi’s as given above, and

a =
1

2

λhhh

y3 + µZ − µh
+

1

y1 + µh − µZ
+

1

y2 + µh − µZ
+

1

2µZ

The cross section σ(e+e− → hhZ) is shown for
√
s = 500 GeV at tanβ = 1.5 as a

function of the Higgs mass Mh in Fig. 4a. For small masses, the cross section is built up
almost exclusively by H → hh decays [dashed curve], except close to the point where the
λHhh coupling accidentally vanishes (cf. Ref.[8]) and for masses around ∼ 90 GeV where
additional contributions come from the decay A → hZ [this range of Mh corresponds
to MA values where BR(A → hZ) is large; c.f. Fig.3]. For intermediate masses, the
resonance contribution is reduced and, in particular above 90 GeV where the decoupling
limit is approached, the continuum hh production becomes dominant, falling finally down
to the cross section for double Higgs production in the Standard Model [dashed line].
After subtracting the H → hh decays [which of course is very difficult], the continuum
cross section is about 0.5 fb, and is of the same order as the SM cross section at

√
s = 500

GeV. Very high luminosity is therefore needed to measure the trilinear hhh coupling. At
higher energies, since the cross section for double Higgs–strahlung scales like 1/s, the
rates are correspondingly smaller, c.f. Fig.4b.

Prospects are similar for large tanβ values. The cascade decay H → hh is restricted
to a small Mh range of less than 70 GeV, with a production cross section of ∼ 20 fb at√
s = 500 GeV and ∼ 3 fb at 1.5 TeV. The continuum cross sections are of the order

of 0.1 fb at both energies, so that very high luminosities will be needed to measure the

94



continuum cross sections in this case if the background problems can be mastered at all.

We have repeated the analysis for the continuum process e+e− → Ahh (cf. Fig.1c).
However, it turned out that the cross section is built up almost exclusively by resonant
AH → Ahh final states, with a very small continuum contribution, so that the measure-
ment of the coupling λhAA is extremely difficult in this process.

3.2 WLWL → hh

In the effective longitudinal W approximation4, the total cross section for the subprocess
WLWL → hh, Fig. 1d, is given by

σ̂LL =
G2

F ŝ

64π

βh

βW







(1 + β2
W )2

[

µZ sin(β − α)

1 − µh
λhhh +

µZ cos(β − α)

1 − µH
λHhh + 1

]2

(16)

+
β2

W

βWβh

[

µZ sin(β − α)

1 − µh
λhhh +

µZ cos(β − α)

1 − µH
λHhh + 1

]

[sin2(β − α)g1

+ cos2(β − α)g2] +
1

β2
Wβ

2
h

[

sin4(β − α)g3 + cos4(β − α)g4 + sin2 2(β − α)g5

]

}

with

g1 = 2[(βW − xWβh)
2 + 1 − β4

W ]lW − 4βh(2βW − xWβh)

g2 = 2(xCβh − βW )2lC + 4βh(xCβh − 2βW )

g3 = βh[βhxW (3β2
hx

2
W + 14β2

W + 2 − 2β4
W ) − 4βW (3β2

hx
2
W + β2

W + 1 − β4
W )][lW + xW yW ]

−[β4
W + (1 − β4

W )(1 + 2β2
W − β4

W )][lW/xW − yW ] − 2β2
hyW (2βW − βhxW )2

g4 = βh[βhxC(3β2
hx

2
C + 14β2

W ) − 4βW (3β2
hx

2
C + β2

W )][lC + xCyC]

−β4
W [lC/xC − yC ] − 2yCβ

2
h(2βW − βhxC)2

g5 =
βhβW lW
x2

W − x2
C

[2xW (2x2
WβhβW − xCx

2
Wβ

2
h − xCβ

2
W ) − 2x2

W (β2
hx

2
W + β2

W + 1 − β4
W )

+
xC

βWβh
((β2

hx
2
W + β2

W )(1 − β4
W ) + (β2

hx
2
W + β2

W )2)] − 4β3
hβW (xW + xC)

+
βhβW lC
x2

C − x2
W

[4x3
CβhβW − 2xCxW (β2

hx
2
C + β2

W + 1 − β4
W ) − 2x2

C(β2
hx

2
C + β2

W )

+
xW

βWβh

((β2
W + β2

hx
2
C)(1 − β4

W ) + (β2
hx

2
C + β2

W )2)] + 2β2
H(xCxWβ

2
H + 4β2

W ) (17)

The scaling variables are defined in the same way as before. ŝ1/2 is the c.m. energy of the
subprocess, βW = (1 − 4M2

W/ŝ)
1/2 and βh = (1 − 4M2

h/ŝ)
1/2 are the velocities of the W

and h bosons, and

xW = (1 − 2µh)/(βWβh) , xC = (1 − 2µh + 2µH± − 2µW )/(βWβh)

li = log(xi − 1)/(xi + 1) , yi = 2/(x2
i − 1) (18)

4For qualifying comments see footnote 3.
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The value of the charged Higgs boson mass MH± in the H± t–channel exchange diagram
of Fig.1d is given by M2

H± = M2
A +M2

W .

In the decoupling limit, the cross section reduces again to the SM cross section which
in terms of g1 and g2, defined above, is given by:

σ̂LL =
G2

F ŝ

64π

βh

βW







(1 + β2
W )2

[

µZλhhh

1 − µh

+ 1

]2

+
1 + β2

W

βWβh

[

µZλhhh

1 − h1

+ 1

]

g1 +
g3

β2
Wβ

2
h







(19)

After folding σ̂LL with the longitudinal WLWL luminosity [12], one obtains the total
cross section σ(e+e− → νeν̄ehh) shown in Fig. 4b as a function of the light Higgs mass Mh

for tan β = 1.5 at
√
s = 1.5 TeV. It is significantly larger than for double Higgs–strahlung

in the continuum. Again, for very light Higgs masses, most of the events are H → hh
decays [dashed line]. The continuum hh production is of the same size as pair production
of SM Higgs bosons [dotted line] which, as anticipated, is being approached near the
upper limit of the h mass in the decoupling limit. The size of the continuum hh fusion
cross section renders this channel more promising than double Higgs–strahlung for the
measurement of the trilinear hhh coupling.

For large tan β values, strong destructive interference effects reduce the cross section
in the continuum to very small values, of order 10−2 fb, before the SM cross section is
reached again in the decoupling limit. As before, the hh final state is almost exclusively
built up by the resonance H → hh decays.

4. Summa

It is convenient to summarize our results by presenting Fig.5, which displays the areas of
the [MA, tanβ ] plane in which λHhh [solid lines, 1350 hatching] and λhhh [dashed lines, 450

hatching] could eventually be accessible by experiment. The size of these areas is based
on purely theoretical cuts so that they are expected to shrink if background processes and
detector effects are taken into account.

(i) In the case of H → hh, we require a lower limit of the cross section σ(H)×BR(H →
hh) > 0.5 fb and at the same time for the decay branching ratio 0.1 <BR(H → hh) < 0.9,
as discussed earlier. Based on these definitions, λHhh may become accessible in two
disconnected regions denoted by I and II [1350 hatched] in Fig.5. For low tanβ , the left
boundary of Region I is set by LEP1 data. The gap between Regions I and II is a result
of the nearly vanishing λHhh coupling in this strip. The right boundary of Region II is
due to the overwhelming tt̄ decay mode for heavy H masses, as well as due to the small
H production cross section. For moderate values of tanβ , the left boundary of Region I
is defined by BR(H → hh) > 0.9. In the area between Regions I and II, H cannot decay
into two h bosons, i.e. MH < 2Mh. For large tanβ >∼ 10, BR[H → hh(AA)] is either too
large or too small, except in a very small strip, MA ≃ 65 GeV, towards the top of Region
I. [Note that h and A are nearly mass–degenerate in this area.]
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(ii) The dashed line in Fig.5 describes the left boundary of the area [450 hatched] in
which λhhh may become accessible; it is defined by the requirement that the continuum
WLWL → hh cross section, σcont, is larger than 0.5 fb. Note that the resonant H → hh
events in Region II must be subtracted in order to extract the λhhh coupling.

In conclusion, we have derived the cross sections for the double production of the
lightest neutral Higgs boson in the MSSM at e+e− colliders: in the Higgs–strahlung
process e+e− → Zhh, [in the triple Higgs production process e+e− → Ahh], and in the
WW fusion mechanism. These cross sections are large for resonant H → hh decays so
that the measurement of the triple Higgs coupling λHhh is expected to be fairly easy for
H → hh decays in the MH mass range between 150 and 350 GeV for small tanβ values.
The continuum processes must be exploited to measure the triple Higgs coupling λhhh.
These continuum cross sections, which are of the same size as in the SM, are rather small
so that high luminosities are needed for the measurement of the triple Higgs coupling λhhh.

Acknowledgements:

Discussions with G. Moultaka and technical help by T. Plehn are gratefully acknowledged.
A.D. thanks the Theory Group for the warm hospitality extended to him at DESY, and
H.E.H. acknowledges the partial support of the U.S. Department of Energy.

1. For reviews on the Higgs sector in the SM and MSSM, see J.F. Gunion, H.E.
Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide, Addison–Wesley 1990;
A. Djouadi, Int. J. Mod. Phys A10 (1995) 1.

2. J.F. Gunion and H.E. Haber, Nucl. Phys. B272 (1986) 1; B278 (1986) 449.

3. T. Plehn, M. Spira and P. M. Zerwas, DESY 95–215 and Z. Phys. C (in press).

4. See e.g. P.M. Zerwas, Proceedings, Les Rencontres de Physique de la Vallée d’Aoste,
La Thuile 1994 and DESY 94–001.

5. K. Gaemers and F. Hoogeveen, Z. Phys. C26 (1984) 249; A. Djouadi, V. Driesen
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Fig.1: Main mechanisms for the double production of the light MSSM Higgs boson in
e+e− collisions: a) e+e− → ZH , e+e− → AH and WW → H followed by H → hh; (b)
e+e− → hhZ, (c) e+e− → hhA and (d) WW → hh.
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Fig. 2: Cross sections for the production of the heavy CP–even Higgs boson H in e+e−

collisions, e+e− → ZH/AH and e+e− → Hνeν̄e, and for the background process e+e− →
Ah [the dashed curve shows 1

2
× σ(Ah) for clarity of the figures]. The c.m. energies are

chosen
√
s = 500 GeV in (a), and 1.5 TeV in (b).
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Fig. 3: The branching ratios of the main decays modes of the heavy CP–even neutral
Higgs boson H in (a), and of the pseudoscalar Higgs boson A in (b).
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Fig. 4: The cross sections for hh production in the continuum for tanβ = 1.5: e+e− →
hhZ at a c.m. energy of

√
s = 500 GeV (a) and WLWL → hh at

√
s = 1.5 TeV (b).
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Fig. 5: The areas of the [MA, tanβ ] plane in which the Higgs self–couplings λHhh and
λhhh could eventually be accessible by experiment at

√
s = 1.5 TeV [see text for further

discussions].
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Abstract

We discuss the loop induced production of Higgs boson pairs at high–energy e+e−

colliders, both in the Standard Model and in its minimal supersymmetric extension.
The cross sections are rather small, but these processes could be visible with high-
enough luminosities and if longitudinal polarization is available.

1. Introduction

If the genuine supersymmetric particles were too heavy to be kinematically accessible
in collider experiments, the only way to distinguish between the Standard Model (SM) and
the lightest Higgs boson of its minimal extension (MSSM) in the decoupling limit [where
all the other MSSM Higgs bosons are heavy, and the lightest Higgs boson h has exactly the
same properties [1] as the SM Higgs boson except that its mass is restricted to be smaller
than Mh <∼ 140 GeV], is to search for loop induced contributions of the supersymmetric
particles, which could give rise to sizeable deviations from the predictions of the SM. Well
known examples of this loop induced processes are the γγ widths of the Higgs particles
[2] or the process e+e− → Z+Higgs which in the MSSM receive extra contributions from
supersymmetric gaugino and sfermion loops [3].

Another type of such discriminating processes is the pair production of Higgs bosons
which will be analyzed here. In the SM, where it has been first discussed in Ref.[4],
the process e+e− → H0H0 is mediated only by W and Z boson loops, Fig.1a, while
in the Minimal Supersymmetric extension, additional contributions to the corresponding
process e+e− → hh will originate from chargino, neutralino, selectron and sneutrino loops,
as well as loops built up by the associated A and H± bosons; Fig.1b. The cross sections
for these two processes [as well as for the production of the heavy MSSM Higgs bosons,
e+e− → HH,AA and hH ] have been derived in [5] and here we will summarize the results.

2. SM Higgs Pair Production

In the SM, non–zero contributions to the process e+e− → H0H0 can only come from
one–loop diagrams, in the limit of vanishing electron mass. Among these, the diagrams
involving the one–loop He+e− vertex [because me ≃ 0] and those with γ and Z boson
s–channel exchanges [because of CP invariance] give zero–contribution; additional contri-
butions from vertex diagrams involving the quartic WWH0H0/ZZH0H0 couplings are
proportional me and also negligible. The only contribution to Higgs pair production in
the SM will therefore come from W and Z box diagrams, Fig.1a. The expressions of the
cross sections, allowing for longitudinal polarization of the initial beams are given in [5].
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Fig. 1: Feynman diagrams contributing to the Higgs boson pair production process in e+e−

collisions in the SM (a) and in the MSSM (b).

The cross sections are shown in Fig.2 as a function of the Higgs boson mass for two
center–of–mass energies,

√
s = 500 GeV and 1.5 TeV. Except when approaching the 2MH

threshold [and the small dip near the WW threshold], the cross sections are practically
constant for a given value of the c.m. energy, and amount to σ ∼ 0.2 fb at

√
s = 500 GeV

in the unpolarized case. The decrease of the cross sections with increasing center–of–mass
energy is very mild: at

√
s = 1.5 TeV, the cross section is still at the level of σ ∼ 0.15 fb

for Higgs boson masses less than MH <∼ 350 GeV.

With left–handed polarized electrons, the cross section e−Le
+ → H0H0 is larger by a

factor of two, while for left–handed electrons and right–handed positrons, the cross section
e−Le

+
R → H0H0 is larger by a factor of four, compared to the unpolarized case. Therefore,

the availability of longitudinal polarization of the initial beams is very important. With
integrated luminosities of the order of

∫ L ∼ 100 fb−1 which are expected to be available
for future high–energy linear colliders, one could expect a few hundred events in the course
of a few years, if both initial beams can be longitudinally polarized.

For MH <∼ 140 GeV, the signal will mainly consist of four b quarks in the final state,
e+e− → H0H0 → bb̄bb̄, since the dominant decay mode of the Higgs boson in this mass
range is H0 → bb̄. This calls for very efficient µ–vertex detectors to tag the b jets. Since
these rare events will be searched for only after the discovery of the Higgs boson in the
main production processes [5], MH will be precisely known and the two mass constraints
m(bb̄) = MH , together with the large number of final b quarks, give a reasonable hope
to experimentally isolate the signals despite of the low rates. For MH >∼ 140 GeV, since
H0 → W+W− and H0 → ZZ will be the dominant decay modes of the Higgs boson,
the signals will consist of four gauge bosons in the final state, e+e− → H0H0 → V V V V ,
leading to eight final fermions. These rather spectacular events should also help to exper-
imentally isolate the signal.

3. MSSM Higgs Pair Production

For the pair production of the light CP–even Higgs boson of the MSSM, e+e− → hh,
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Fig. 2: The cross sections for, e+e− → H0H0, as a function of MH for
√

s = 500 GeV [dashed

lines] and
√

s = 1.5 TeV [solid lines]. The lower, middle and upper curves correspond to the

cross sections with unpolarized, e−L and e+
Re−L beams respectively.

several additional diagrams will contribute to the process; Fig.1b. Besides the W and Z
boson box diagrams, one has the box diagrams with the exchange of the pseudoscalar and
the charged Higgs bosons, A and H± and the box diagrams built up by chargino/sneutrino
and neutralino/selectron loops. The analytical expressions of the cross sections, allowing
for longitudinal polarization of the initial beams are also given in [5].

In Fig.3, we show the cross section for the process e+e−→hh as a function of Mh for
two c.m. energies

√
s = 500 GeV and 1.5 TeV and two values of tanβ = 1.5 and 50. The

solid lines are for the full cross sections, while the dashed lines are for the cross sections
without the SUSY contributions. To include the latter we have chosen the parameters
M2 = −µ = 150 GeV, while the common slepton and squark masses are taken to be
ML = 300 GeV and MS = 500 GeV; the parameter At and Ab are set to zero. Only
the unpolarized cross sections are discussed: as mentioned previously, they are simply
increased by a factor of 2(4) when the initial beam(s) are longitudinally polarized.

Let us first discuss the case where the supersymmetric contributions are not included,
for small tanβ the cross section is of the same order as the SM cross section and does
not strongly depend on Mh especially at very high–energies. Although the WWh/Zhh
couplings are suppressed by sin(β−α) factors, the suppression is not very strong and the
W/Z box contributions are not much smaller than in the SM; the diagrams where A/H±

are exchanged will give compensating contributions since the hAZ/hH±W couplings are
proportional to the complementary factor cos(β−α). As in the SM case, the cross sections
slightly decrease with increasing energy. For large tanβ values, the factors sin / cos(β−α)
vary widely when Mh is varied. For small Mh, the factor sin(β − α) → 0, and the
contribution of the diagrams with A/H± exchange dominates. The latter contribution
decreases with increasing Mh [i.e. with decreasing cos(β − α)], until the decoupling limit
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Fig. 3: The cross sections for e+e− → hh in the MSSM, as a function of Mh for
√

s = 500

GeV and
√

s = 1.5 TeV and for tan β = 1.5 and 50. The solid curves correspond to the

full cross sections, while the dashed curves correspond to the cross sections without the SUSY

contributions.
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is reached for Mh ≃ 110 GeV. In this case, the factor sin(β−α) → 1 and the W/Z boson
loops are not suppressed anymore; one then obtains the SM cross section.

The contributions of the chargino/selectron and neutralino/sneutrino loops lead to a
destructive interference. At high–energies, the supersymmetric boxes practically do not
contribute; but at low energies, and especially below the decoupling limit, the SUSY
contributions can be of the order of ∼ 10%. We have scanned the SUSY parameter
space, and the maximum contribution of the SUSY loops that we have found was about
∼ −15%. In the decoupling limit, the SUSY contributions are, at most, of the order of
a few percent. Because of the rather low production rates, it will therefore be difficult to
experimentally see this effect.

4. Summary

We have discussed the one–loop induced production of Higgs boson pairs at future
high–energy e+e− colliders in the SM and the MSSM. In the SM, the unpolarized cross
section is rather small, of the order 0.1–0.2 fb. The longitudinal polarization of both the e−

and e+ beams will increase the cross section by a factor of 4. With integrated luminosities
∫ L >∼ 100 fb−1 as expected to be the case for future high–energy linear colliders, one could
expect a few hundred events in the course of a few years if longitudinal polarization is
available. The final states are rather clean, giving a reasonable hope to isolate the signals
experimentally. In the MSSM, additional contributions to the processes e+e− → hh come
from chargino/ neutralino and slepton loops. For hh production, the contributions of the
supersymmetric loops are in general rather small, being of the order of a few percent; the
cross sections are therefore of the same order as in the SM. For the processes involving
heavy Higgs bosons, the cross sections are even smaller than for e+e− → hh, and the
signals will be hard to be detected experimentally.
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Abstract

We show that at least one of the Higgs bosons of the Next to Minimal Super-
symmetric Standard Model can be detected at future Linear Colliders of 500, 1000
and 2000 GeV c.m. energies.

1. Introduction

The Next to Minimal Supersymmetric Standard Model (NMSSM) [1–3] is a minimal
extension to the Minimal Supersymmetric Standard Model [4]. The NMSSM provides
the most economic solution of the so called µ-problem of the MSSM by introducing an
additional Higgs singlet superfield N = (N,ψN , FN) with a Higgs singlet N , a higgsino
singlet ψN and an auxiliary field FN . Together with the two Higgs doublets superfields
H1,2 = (H1,2, ψ1,2, F1,2) the superpotential of the NMSSM is given by

W = λHT
1 ǫH2N − 1

3
kN 3 (1)

The soft breaking part of the Higgs sector is given by

Vsoft = −λAλH
T
1 ǫH2N − 1

3
kAkN

3 + h.c. (2)

where Aλ and Ak are soft breaking mass parameters.
H1, H2 and N develop vacuum expectation values v1, v2 and x respectively. The

NMSSM contains three scalar Higgs bosons S1, S2 and S3 with masses mS1
≤ mS2

≤ mS3
,

two pseudoscalar Higgs bosons P1 and P2 with masses mP1
≤ mP2

and a charged one H+

with mass mC .
The Higgs sector has 6 free parameters λ, k, tanβ = v1/v2, x, Aλ and Ak.

2. Constraints on parameters

A remarkable result of the MSSM is the tree level bound of mS1
≤ mZ cos 2β. This is due

to the fact that all quartic terms have gauge coupling constants. In case of the NMSSM
there is a quartic term with the coupling constant λ. It turns out that the upper bound
of λ may be relevant for mS1

. An effective way of determining this bound is RG-analysis
[1–8].
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The one loop RG-equation of λ is coupled with that of k and ht, the Yukawa coupling
constant of the top quark (neglecting other quarks) and is given by

dλ

dt
=

1

8π2

(

k2 + 2λ2 +
3

2
h2

t +
3

2
g2
2 −

1

2
g2
1

)

λ (3)

dk

dt
=

3

8π2

(

k2 + λ2
)

k (4)

dht

dt
=

1

8π2

(

1

2
λ2 + 3h2

t −
8

3
g2
3 −

3

2
g2
2 −

13

18
g2
1

)

ht (5)

where t = lnµ and µ being the renormalization scale. By demanding no Landau pole up
to the GUT scale one can determine from eq. (5) the upper bound of λ and k and the
lower bound of tanβ at the electroweak scale. We plot our results in Fig. 1 (Fig. 2) for
mt = 175 GeV (190 GeV). They show that λmax decreases with increasing k∗. The lower
bound of tanβ is about 1.24 for mt = 175GeV and 2.6 for mt = 190GeV. For tanβ >

∼ 3
λmax is almost independent on tanβ. The upper bound of k is about 0.7.

3. Mass upper bounds

The tree level bound of mS1
is given by [3]

m2
S1

≤ m2
Z

(

cos2 2β +
2λ2

g2
1 + g2

2

sin2 2β

)

= m2
Smax

1
(6)

The upper bound of mS2
and mS3

can be expressed in terms of mSmax
1

and mS1

m2
S2

≤ m2
Smax

2
=
m2

Smax
1

− R2
1m

2
S1

1 −R2
1

(7)

m2
S3

≤ m2
Smax

3
=
m2

Smax
1

− (R2
1 +R2

2)m
2
S1

1 − (R2
1 +R2

2)
(8)

where Ri = Ui1 cosβ+Ui2 sin β and Uij is the 3× 3 orthogonal matrix which diagonalizes
the scalar mass matrix.

R1 and R2 satisfy the unitarity condition 0 ≤ R2
1 +r2

2 ≤ 1. The tree level upper bound

(6) yields mS1
≤ mZ for λ2 ≤ (g2

1 + g2
2)/2 = (0.52)2 and mS1

≤
√

2/(g2
1 + g2

2)λmZ =

1.92λmZ for λ2 > (0.52)2. Using λmax = 0.64− 0.74 from section 2 the tree level relation
yields mS1

≤ 113GeV − 131GeV.
As in the case of the MSSM the contributions of radiative corrections may change

this result considerably. Several groups calculated higher order contributions to the mass
matrices using the one loop effective potential and determined the corrected upper bound
[8,9,10,11].

∗We obtain λmax = 0.64 − 0.74 for mt = 175 − 190 GeV.
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The result in our notation [8] is given by

m2
S1

≤ m2
Z

(

cos2 2β +
2λ2

g2
1 + g2

2

sin2 2β

)

+ α cos2 β + β sin 2β + γ sin2 β (9)

with (AT = −At + λx cot β)

α = − 1

16π2

(

λxAT

v1

)2(
mt

mt̃

)4

(10)

β =
3

8π
λxAT

(

m2
t

mt̃v1

)2 (

1 +
AtAT

6m2
t̃

)

(11)

γ =
3

8π

(

m2
t

v2
1

)2 [

2 ln
m2

t̃

m2
t

− 2AtAT

m2
t̃

− A2
tA

2
T

6m4
t̃

]

(12)

In this result only top and stop contributions were taken into account. We numerical
calculated mSmax

1
in the region 175GeV ≤ mt ≤ 190GeV, 250GeV ≤ x,Aλ, At, mt̃ ≤

1000GeV and 2 ≤ tan β ≤ 20 and obtained [8]

120 ≤ mSmax
1

≤ 156GeV (13)

4. Production of scalar Higgs bosons at e+e− Colliders

The upper bound mS1
≤ 120−156GeV suggests that the accessible area of the parameter

space at LEP1 with
√
s = mZ might be very small. Actually we showed that the existing

LEP1 data do not exclude the existence of S1 with mS1
= 0GeV [12].

For colliders with
√
s = 500, 1000 or 2000GeV the situation is different. In this case

the production cross section of one Si via the Higgsstrahlung e+e− → ZSi with real Z
and Si is always possible as the collider energy is larger than ET = 212− 248GeV. ET is
a kind of threshold energy and is an important quantity of a model.

In this case it is possible to derive a lower bound for the production cross section σi

of Si as a function of the collision energy only. This lower bound would give information
about how far the model could be tested.

In order to derive the lower bound of σi we consider the production cross sections of
S1, S2, S3 via the Higgsstrahlungs process, denoted by σ1, σ2, σ3, which can be expressed
in terms of the standard model Higgs production cross section σSM and R1 and R2 defined
in section 2:

σ1(mS1
) = R2

1σSM(mS1
) (14)

σ2(mS2
) = R2

2σSM(mS2
) (15)

σ3(mS3
) = (1 − R2

1 −R2
2)σSM(mS3

) (16)

A useful observation is that σi(m
max
Si

) ≤ σi(mSi
) which allows one to derive parameter

independent lower limits on σi as we will see in the following.
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First we determine at a fixed set of mS1
, R1, R2 the cross sections σ1(R1, R2, mS1

),
σ2(R1, R2, mSmax

2
) and σ3(R1, R2, mSmax

3
). Then we keep R1 and R2 fixed, but vary mS1

from its minimum to its maximum value and determine the quantity σ(R1, R2) defined
by

σ(R1, R2) = min
0≤mS1

≤mSmax
1

[max(σ1, σ2, σ3)] (17)

where σ1 = σ1(R1, R2, mS1
), σ2 = σ2(R1, R2, mSmax

2
) and σ3 = σ3(R1, R2, mSmax

3
). As a

last step we vary R2
1 and R2

2 from 0 to 1 with R2
1 +R2

2 ≤ 1 and plot σ(R1, R2) in the R1-
R2-plane. It is plausible that σ(R1, R2) = 0 for

√
s < ET = mz +mSmax

1
= 212− 248GeV

in the entire R1-R2-plane. This is the case for LEP2 with
√
s ≤ 205 GeV. Therefore this

method does not give any results for LEP2. For
√
s > ET σ(R1, R2) never vanishes and

the minimum of σ(R1, R2) is a parameter independent lower limit of one of the σi. This
minimum is thus a characteristic quantity of the model.

In Fig. 3 we plotted σ(R1, R2) for
√
s = 500 GeV and mSmax

1
= 145 GeV. The

minimum is about 16 fb. When the discovery limit is about 30 events, one would need
a luminosity of about 25 fb, which is a realistic one. Fig. 4 (Fig. 5) shows σ(R1, R2)
for

√
s = 1000(2000) GeV with minimum cross section of 4 fb (1 fb). Fig. 6 shows

the minimum of σ(R1, R2) as a function of
√
s and mSmax

1
as a parameter. We see that

the effect of mSmax
1

on σmin is very big around
√
s = 300 GeV, but rather small for√

s ≥ 500 GeV.
Fig. 7 shows the tree level cross sections σ1, σ2 and σ3 for an exemplary set of param-

eters with the contributions from (i) the Higgsstrahlungsprocess e+e− → ZSi → bbSi, (ii)
the process where Si is radiated off from b or b and (iii) e+e− → Z → PjSi → bbSi, where
Pj(j = 1, 2) is a pseudoscalar Higgs boson.

Fig. 8 shows the same as Fig. 7, but with one loop contributions via the effective
potential. The higher order contribution is rather important for the energy region around
150 GeV and decreases with

√
s. In this parameter region the dominant production is

that of S2 at
√
s = 500 GeV and is about 13 fb.

We conclude that the Higgs sector of the NMSSM can most probably be tested con-
clusively at the future linear e+e−-colliders with 500, 1000 or 2000 GeV c.m. energies.
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Figure 1: Upper bound for λ as a funtion of tanβ for mtop = 175 GeV.

Figure 2: Upper bound for λ as a funtion of tanβ for mtop = 190 GeV.
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Figure 3: σ(R1, R2) as definded in the text for
√
s = 500 GeV.

Figure 4: σ(R1, R2) for
√
s = 1000 GeV.
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Figure 5: σ(R1, R2) for
√
s = 2000 GeV.

Figure 6: Minimal value of σ(R1, R2) as a function of
√
s for various values of mSmax

1
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Figure 7: Cross section for e+e− → Zbb for Aλ = 220 GeV, Ak = 160 GeV, x =
1000 GeV, tanβ = 2, k = 0.04, λ = 0.12. Masses and mixing angles have calculated
from the tree level protential.

Figure 8: The same as above, but with masses and mixing angles obtained from the one
loop effective potential. The top mass is 175 GeV, mt̃l

= mt̃R = 1 TeV and At = 0 GeV.
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