403 research outputs found
Electromagnetic backscattering by corner reflectors
The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors
Electromagnetic backscattering by corner reflectors
The analysis of the backscatter cross section of a dihedral corner reflector, using Geometrical Theory of Diffraction (GTD) and Physical Theory of Diffraction (PTD), is completed in the azimuthal plane, and very good agreement with experimental results is obtained. The advantages and limitations of the GTD and PTD techniques are discussed specifically for radar cross section applications. The utilization of GTD and PTD in oblique incidence diffraction from conducting targets is discussed. Results for equivalent current off-axis diffraction from the flat rectangular plate are presented using the equivalent currents of Knott, Senior, and Michaeli. The rectangular subdivision technique of Sikta, and its extension by Sunatara, alleviate some of the limitations of the equivalent techniques. As yet, neither technique can be used in bistatic scattering or for multiple scattering of a complex target
Multidecadal Signal of Solar Variability in the Upper Troposphere During the 20th Century
Studies based on data from the past 25-45 years show that irradiance changes related to the 11-yr solar cycle affect the circulation of the upper troposphere in the subtropics and midlatitudes. The signal has been interpreted as a northward displacement of the subtropical jet and the Ferrel cell with increasing solar irradiance. In model studies on the 11-yr solar signal this could be related to a weakening and at the same time broadening of the Hadley circulation initiated by stratospheric ozone anomalies. Other studies, focusing on the direct thermal effect at the Earth's surface on multidecadal scales, suggest a strengthening of the Hadley circulation induced by an increased equator-to-pole temperature gradient. In this paper we analyse the solar signal in the upper troposphere since 1922, using statistical reconstructions based on historical upper-air data. This allows us to address the multidecadal variability of solar irradiance, which was supposedly large in the first part of the 20th century. Using a simple regression model we find a consistent signal on the 11-yr time scale which fits well with studies based on later data. We also find a significant multidecadal signal that is similar to the 11-yr signal, but somewhat stronger. We interpret this signal as a poleward shift of the subtropical jet and the Ferrel cell. Comparing the magnitude of the two signals could provide important information on the feedback mechanisms involved in the solar climate relationship with respect to the Hadley and Ferrel circulations. However, in view of the uncertainty in the solar irradiance reconstructions, such interpretations are not currently possibl
Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties
Abstract not availableTushar Kumeria, Htwe Mon, Moom Sinn Aw, Karan Gulati, Abel Santos, Hans J. Griesser, Dusan Losi
Photo-doping of plasma-deposited polyaniline (PAni)
Although polyaniline (PAni) has been studied extensively in the past, little work has been done on producing films of this material via plasma deposition. We have synthesized and analysed the photoresponse behavior of plasma-deposited polyaniline films and proceeded to dope the films using light and with various metal ions. Upon illumination, the photocurrent responses of the thin plasma films increased over time, and the response was dependent on the film thickness. On doping the film with metal ions, the photocurrent densities were enhanced from nano- to micro-amperes per square centimeters. Doping seemed, however, to cause the films to become unstable. Despite this setback, which requires further research, the drastic increase in current shows great promise for the development of plasma-deposited polyaniline films for application in the area of organic electronics and photovoltaics
Direct extreme UV-lithographic conversion of metal xanthates into nanostructured metal sulfide layers for hybrid photovoltaics
We present a versatile strategy toward the preparation of nanostructured metal sulfide layers, which exploits the photosensitivity of metal xanthates as a powerful tool for lithographic structuring. Using extreme ultraviolet interference lithography (EUV-IL), we successfully realized well-defined column and comb nanostructures. This approach provides new pathways to fabricate highly ordered structured metal sulfide layers with periodicities far below 100 nm for potential application in hybrid solar cells. © 2013 The Royal Society of Chemistry
Antifungal coatings by caspofungin immobilization onto biomaterials surfaces via a plasma polymer interlayer
Published Online: 14 October 2015Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.Stefani S. Griesser, Marek Jasieniak, Bryan R. Coad, and Hans J. Griesse
Versatile thiol-based reactions for micrometer- and nanometer-scale photopatterning of polymers and biomolecules
Thiol-based chemistry provides a mild and versatile tool for surface functionalization. In the present work, mercaptosilane films were patterned by utilizing UV-induced photo-oxidation of the thiol to yield sulfonate groups via contact and interferometric lithography (IL). These photo-generated sulfonic acid groups were used for selective immobilization of amino-functionalized molecules after activation with triphenylphosphine ditriflate (TPPDF). Moreover, protein-resistant poly(oligoethyleneglycolmethacrylate) (POEGMA) brushes were grown from the intact thiol groups by a surface-induced polymerization reaction. Exploiting both reactions it is possible to couple amino-labelled nitrilotriacetic acid (NH2-NTA) to sulfonate-functionalized regions, enabling the site-specific binding of green fluorescent protein (GFP) to regions defined lithographically, while exploiting the protein-resistant character of POEGMA brushes to prevent non-specific protein adsorption to previously masked areas. The outstanding reactivity of thiol groups paves the way towards novel strategies for the fabrication of complex protein nanopatterns beyond thiol–ene chemistry
- …