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ABSTRACT

The Geometrical Theory of Diffraction (GTD), which supplements

Geometrical Optics (GO), and the Physical Theory of Diffraction (PTD),

which supplements Physical Optics (PO), are used to predict the

backscatter cross sections of dihedral corner reflectors which have

right, obtuse or acute Included angles. These theories allow individual

backscattering mechanisms of the dihedral corner reflectors to be

identified and provide good agreement with experimental results in the

azimuthal plane. The advantages and disadvantages of the geometrical

and physical theories are discussed in terms of their accuracy,

usefulness and complexity. Numerous comparisons of analytical results

with experimental data are presented. While physical optics alone is

more accurate and more useful than geometrical optics alone, the

combination of geometrical optics and geometrical diffraction seems to

outperform physical optics and physical diffraction when compared with

experimental data, especially for acute angle dihedral corner

reflectors.

Some topics which deserve special attention include the

continuity of geometrical diffraction fields from flat surfaces bounded

by parallel edges, the need to avoid far field approximations in GTD

analyses, and two alternative methods for determining double reflected

physical optics fields for which tradeoffs in accuracy and complexity

are encountered.
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CHAPTER1

INTRODUCTION

In the lnterest of promoting the advancement of radar technology,

engineers In the past years have endeavored to establish methods to

determine the backscatter characteristics of representative radar

targets. Evaluating the radar echo strength of a particular target, as

a functlon of the orientation of the target relatlve to the radar, has

become a toplc of major concern because the relative strength of the

echo returned from a target can be related to the maximum dlstance at

whlch that target can be detected or observed by a glven radar system.

The radar cross sectlon of a target, alternatively referred to as

the backscatter cross sectlon whenever the directions of Incidence and

observation are the same, is a quantitative measure of the target's

scattering properties, and relates the given target to a measure of an

equivalent area which would reflect the same power density In a speclfic

direction glven the same lnctdent power density. The radar cross

section is a useful quantity because It Identifies scattering properties

of an object independent of the radar system whlch is to observe that

object and Independent of the distance of observation provided the

distance ls large In comparison to the target or the radar antenna.

When considering the scattering properties of a conducting

object, the two domlnant mechanisms whlch come into account are

reflections from surfaces and diffraction from edges. Other mechanisms

which may arlse In certain target configurations include corner

diffractions and creeping waves. Understanding these mechanisms has

become of great Importance in recent years for the development of
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methods to reduce radar backscatter from ships, planes, mlsslles and

spacecraft. The design of these "low-observable" vehicles, which are

fabricated so as to reduce the possibility of radar detection, is often

a complex task. However, in the future, the construction of nearly

every major new military vehicle is expected to Incorporate some form of

radar cross section shaping.

Two of the most popular methods for determining approximate

scattered fields due to surface reflection and edge diffraction are the

combination of Geometrical Optics (GO) and the Geometrical Theory of

Diffraction (GTD) [1]-[10], and the combination of Physical Optlcs (PO)

and the Physical Theory of Diffraction (PTD) [11]-[16]. These theories

have been used extensively, with much success, in many electromagnetic

scattering problems [17]-[24]. The theories are especially useful

because they provide good agreement with experimental results, they

provide insight into specific scattering mechanisms, they involve slmple

functions available on most computer systems, and their solutions are

relatively simple to construct in comparison to exact methods. Numerous

comparisons of the GTD and PTD methods have been written by various

authors. Some of the foremost of these comparisons are found in

[24]-[29].

Geometrical optics is a simple approximate method for determining

fields reflected from a surface, given the incident fields. The theory

relies on straight ray travel of electromagnetic waves and simply

requires that each ray satisfy Snell's Law of Reflection at each

reflection point; that is, each ray must be geometrically constructed

such that the angle of incidence equals the angle of reflection. As
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such the geonetrlcal optics field becones a function of the curvature of

the incident wavefront and the curvature of the reflecting surface [6],

[7]. The 6eonetrlcal Theory of Diffraction (GTD), orlglnated by Keller

[I], and refined by KouyounJlan and Pathak [2], [3] supplenents

geonetrlcal optics by adding contributions due to edge diffraction at

perfectly conducting edges. The 6eonetrlcal Theory of Diffraction

introduces diffraction coefficients which are functions of the angles of

incidence and observation, the edge geonetry, and the Incldent wavefront

curvature. The purpose of these diffracted fields Is to renove

discontinuities in the reflected fields which are inherent In a

geometrical ray approach. In regions where the geonetrlcal optics field

is zero, the diffraction theory often predicts nonzero fields.

Physical optics Is an alternate technique for deternlnlng fields

reflected from an llluninated surface. The theory begins by

approximating the current density on any perfectly conducting surface in

terms of the incident field, and fron this current density the reflected

fields can be found using conventional radiation integrals of

electronagnetlcs. Unlike geonetrlcal optics, the theory does not

require the angle of incidence to equal the angle of reflection; hence,

fields are predicted in nany directions in which no geonetrlcal optics

field exists. The Physical Theory of Diffraction, originated by

Ufintsev [II], 8upplenents physical optics to provide correctlons to the

scattered field due to diffraction at edges of conducting surfaces.

Ufintsev suggested the existence of nonunlforn ("fringe") edge currents

in addltlon to the unlforn physical optics surface currents. The

Physical Theory of Diffraction bears sons resemblance to the Geometrical
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Theory of Diffraction in the method of application. The theory differs

In that the physical diffracted fields are continuous everywhere since

the physical optics field Is generally continuous everywhere. In

contrast, the geometrical diffracted fields are discontinuous to

compensate for discontinuities in the geometrical optics field.

When exact solutions are required, field configurations can be

found through electromagnetic boundary value methods. These solutions,

while considered exact, are often difficult to obtain for all but the

simplest geometries. They are often in the form of infinite summations

of complex functions which do not shed Insight Into specific scattering

mechanisms, and they may require multiple solutions of simultaneous

higher order transcendental equations. Another analytical technique,

known as the Moment Method [25], has found usefulness in a variety of

problems [8] and arises from a numerical solution of electromagnetic

boundary value problems. As a numerical technique, it can be as

accurate as desired by taking smaller increments in numerical

Integration algorithms. However, the results do not lend themselves

well to interpretation of the scattering mechanisms. Computatlonally,

the Moment Method is efficient for objects which are not too large In

comparison to the field wavelength.

In this report, the methods of the geometrical and physical

theories of reflection and diffraction are reviewed, and each Is applied

to the dihedral corner reflector. The discussion of the theories

distinguishes the differences in their application and usefulness, and

through the dihedral corner reflector analysis, for which limited

experimental results are available, the accuracy of the theories can be
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evaluated. The dihedral corner reflector was chosen because it exhibits

many of the scattering mechanisms of more complex bodies; namely strong

specular reflections from both singly and doubly reflected fields, and

significant second and third order diffracted fields. The dihedral

corner is analyzed when the interior angle is right, acute, and obtuse

to exemplify the versatility of the theories. All the techniques

mastered in the study of a dihedral corner reflector are applicable to

many other more complex structures.

Basic design equations for the dihedral corner reflector, as well

as other corner reflectors, are presented in [30]-[32] along with

experimental radar cross section patterns. Knott [18] studied the

backscattered fields of the dihedral corner reflector using the physical

optics theory over the first 70 ° on each side of the forward direction.

Michaeli [24] added physical diffraction in a study of the 90 ° dihedral

corner reflector near grazing incidence. Yu and Huang [20] analyzed the

dihedral corner reflector using geometrical optics and geometrical

0

diffraction in the forward region over 180

In this report, the geometrical and physical theories are

compared when applied to the dihedral corner reflector over the full

360 ° of the azimuthal plane. The geometrically and physically scattered

fields are decomposed Into individual diffraction components so that

insight into the formulation of the total field may be obtained. The

results of the analytical methods, using the combination of geometrical

optics and geometrical diffraction and the combination of physical

optics and physical diffraction, are compared with limited experimental

data for the right, obtuse, and acute dihedral corners. The cross
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sections using only the reflected fields are Illustrated first to depict

the accuracy which can be expected fron using geonetrtcal optics or

physical optics alone. The refinenents of the corresponding diffraction

theories are then included to lnprove the conparison with the

experinental results. The accuracy and utility of the two theories can

then be conpared.



CHAPTER2

RADARCROSSSECTION

2.1 Introduction

All objects reflect and diffract electromagnetic waves which

Impinge upon them. The radar cross section (RCS) is a figure-of-merit

which is used to characterize the scattering properties of the object.

Objects which scatter a large proportion of the incident power density

in a specified direction are said to have a large radar cross section,

while objects which direct only a small proportion of the incident power

density in a specified direction are said to have a small radar cross

section. The radar cross section of an object has dimensions of area.

It can be said to be an area which encloses an amount of power from the

tncldent electromagnetic wave, such that If this power were scattered

tsotroptcally it would produce the same power density in the scattered

direction as the actual object.

As such, the radar cross section is not indicative of the

physical size of an object, and it can vary over many orders of

magnitude for objects of approximately the same size or even for the

same object viewed from different directions. The spherical conductor

is the only object whose backscatter radar cross section is independent

of aspect. The sphere's cross section is nearly equal to its physical

cross section, _b 2 (where b is the sphere radius) provided that the

radius is much larger than the field wavelength, and the incidence

direction and scattering direction are identical [32].

The term "radar target" is a conventional name for any object



which the radar system is to observe. The term originated from the

Important military applications of radar systems, and It ls now

routinely used in many nonlilltary applications including tracking

commercial alrcraft and spacecraft, enforcement of speeding laws,

mapping ground terraln, or even monitoring insect migration [33].

2.2 Definition

For three-dimensional targets Intercepting spherical waves, the

formal definition of radar cross sectlon is glven by

where

o= ltm [4nR 2 wS]

o

R

W1 ' Ws

-'1,E

is

= the radar cross section

= the distance of observation from the

target

= the incident and scattered power
densities, respectively.

= the lncldent and scattered e]ectrlc

flelds, respectlvely.

= the incident and scattered magnetic

fle]ds, respectively.

(2-1)

The Incldent and the scattered fields are ieasured, respectively, at the

target and observation Iocatlons.

The radar cross section, o, defined in this manner is

proportlona] to a ratio of power densltles and is Independent of phase.

The radar cross section is defined for specific incidence and scattering



9

dlrectlons. If the directions of incldence and scatterlng are

Identlca], o is designated as a monostatlc cross section; otherwlse It

ls referred to as a blstatJc cross section. The monostatlc radar cross

section is also commonly called the backscatter cross section.

The cross section definition does not explicitly consider

polarization losses. To remedy this situation, any of the field

quantities E l, _s, HI, and _s can be taken as the total field or as Just

a component of the total field. If the incident and scattered

components are mutually parallel or mutually perpendicular, o is

referred to as the primary or cross-polarized radar cross section

respectively.

The topic of two-dimenslonal cross section is important in some

analytical approaches. Also known as the radar cross section per unit

length, the two-dimensional cross section is defined for two-dlmensional

objects as [17]

p._ I_'il J (2-2)

where

o 1 = the radar cross section per unit length

P = the radial distance in cylindrical

coordinates

"i
E _s, =d, Hi, _s = the incident and scattered fields

For thls definition, it is assumed that the object is z-lndependent

(i.e. the longitudinal axis lies parallel to the z-axis). If an object

is of finite length but is z-lndependent along this length, then the
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three-dimenslonal radar cross section of the truncated object can be

related to the two-dimenslonal radar cross section per unit length of

the corresponding z-lndependent object by [17], [19], [34]

where

a = aL8 61
(2-3)

o = the three-dlsenslonal radar cross section

of the truncated two-dimenslonal object

o I = the radar cross section per unit length of

the two-dimensional object

L = the finite length of the truncated object

X ffithe free space wavelength

This transformation equation is useful for simplifying certain analyses

[17], [19]. The truncation of a two-dimensional shape is illustrated in

Fig. 2-1.

Although the three-dlmenslonal radar cross section has dimensions

of area, it is commonly measured and reported using a decibel scale

relative to an area of one square meter, with units "decibels above one

square meter" or dBsm. Since the cross section is directly proportional

to a power ratio, the equation of conversion is

where

o (dBsm) = 10 log_o [ o(ma) ]
(2-4)

0 (dBsm) = the radar cross section in decibels above

one square meter

o (ma) - the radar cross section in square meters
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On a complex target, the backscattered fields from different

scattering centers can constructively or destructively Interfere

producing large fluctuations in the radar cross section If the object

rotates. It is not uncommon for the radar cross section of a complex

target to vary over several orders of magnitude, or tens of dB, for just

a few degrees of rotation.

2.3 Applications

The most important application in which the quantity,O , arises

is In the radar range equation [8]

Prooo=Oo.[]2= ,. ,.
(2-5)

for the bistatlc case of Flg. 2-2 where

o

Pt' Pr

Go1, Go=

= the radar cross section

= the power of the transmitted and received

slgnals, respectively

= the gain of the transmitting and receiving

antennas

R1 = the distance from the object to the
transmitter

Ra = the distance from the object to the
receiver

The equation as given here does not consider losses, antenna mismatch,

and polarization mismatch. In addition, the distances R l and R 2 must be

in the radar's far field.

For the monostatic case (RI = Ra = R, Goi = Go= = G), (2-5)
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reduces to

1

R = (2-6)
(4_)s Pr

If Pr is taken as the minimum detectable radar signal, then R becomes

the maximum distance for radar detection. The equation in this form

explicitly illustrates the necessity for determining the radar cross

section of a given radar target in order that the maximum distance for

detection of that target may be determined. Indeed, the cross section

over a wlde range of aspect angles should be known, because in many

practical situations the orientation of the radar target relative to the

radar is unknown. For this reason, developing experimental and

analytical methods of determining radar cross section has always been of

great importance in radar technology for predicting target detection,

recognition, or imaging capabilities.

Under certain circumstances, it may be important to develop

techniques whereby radar cross sections of various objects might be

reduced or enhanced under some type of optimizing criteria. Analytic

studies of scattering mechanisms are invaluable toward discovering these

techniques. Furthermore, the advancement of radar technologies, such as

target imaging and recognition, benefits from a clear understanding of

the scattering mechanisms involved in reflection and diffracting from

complex targets. For these reasons the analytical methods of the

Geometrical Theory of Diffraction and the Physical Theory of Diffraction

are deemed to be important, because they provide insight to the
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mechanisms and components which produce certain characteristics of the

radar cross section for a partlcu]ar target. For the shapes which can

be studied anaiytlca]]y using aval]ab]e technlques, experlmenta]

measurements of backscattered fle]ds would always be possible. However

experlmenta] methods often do not indicate where and through what

mechanism the scatterlng takes place. In an experiment, conciuslons can

be drawn only after many repetltJons of the experlment have been

performed and systematic manJpuJatlons of the target parameters are

recorded alongside the pertinent experimental data. The analytical

theorles are very desirable because they avoid the need for experlmenta]

tests whlch can be expensive and time-consumlng. In this respect, the

geometrlcal and physical theorles of dJffractlon can be useful for

parametric and design studies.



CHAPTER3

GEOMETRICALTHEORYOFREFLECTIONANDDIFFRACTION

3.1 Introduction

The combination of Geometrical Optics (GO) and the Geometrical

Theory of Dlffractlon (GTD) provldes a powerful analytlc tool for

determining hlgh-frequency solutions to eJectromagnetlc field problems

which In many cases would be too difficult to solve, or would be

impossible to solve by exact boundary-value methods. The geometrical

theories allow more slmple approximate expressions for field

distributions to be obtained, and in addition, the expressions are in

such a form that a more clear understanding of the inner mechanisms of

reflection and diffraction can be grasped. The exact boundary--value

solutions, If they can be found at all, often are in the form of

infinite summations of complex functions and, for many problems, provide

insufficient understanding of the ortglns of the field configurations.

In contrast, geometrical optlcs and the geometrical theory of

diffraction ldentlfy specific radiating polnts on each component of a

complex structure which are said to contribute to the total field

distribution. As such the geometrical theorles can provide Intuition

from which both inductive and deductive conclusions can be drawn.

3.2 Geometrical Optics

The theory of geometrical optics, as the name implies, was

employed first for optical rays, and it was later employed at lower

electromagnetic frequencies when interacting objects were much larger

then the electromagnetic wavelength. In geometrical optics,
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electromagnetic flelds are assumed to propagate In narrow tubes of rays

along straight llne paths tn homogeneous media. The phase of the

electromagnetic wavefront ls directly proportional to the dlstance

traveled, and the constant of proportionality ls the phase constant k.

In lossless media, the fleld strength of the electromagnetic wave can be

determined by requiring that power must be conserved along any narrow

tube of rays and therefore the power density associated with a wave ls

Inversely proportional to the tube's cross sectlon.

The Interaction of tubes of rays wlth discontinuities in media

are found from extensions of Snell's Law of Reflection and Smell's Law

of Refraction. A geometrical reflection, with Its associated image, is

Illustrated in Fig. 3-1. Snell'8 laws are obtained from an examination

of the Interaction of a plane wave with a plane boundary between two

media, and they stipulate requirements on the angles of reflection and

refraction given the angle of Incidence of a plane wave. The

geometrical theory extends these results by considering an Interacting

object to be locally plane If Its radii of curvature In two orthogona]

planes are large. In this manner, Snell's law's can be applied,

grantlng a certaln amount of approximation, In many diverse situations.

Geometrical optics, by Itself, however, has certaln disadvantages

when applied to some problems. First the theory predlcts that the field

will be nonzero only If a ray path can be constructed from the source to

the observation point such that this path satisfies Smell's laws at each

reflection and refraction. A polnt at which the field ls Identically

zero, because no such paths exlst, ts 8ald to be In a shadow region.

Similarly the theory predicts that the fleld at a point will be Infinite
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if an Inflnlte number of ray paths can be extended from the source to

the point; such a point Is said to be at a caustic of the geometrical

optics field. These characteristics are disadvantages of geometrical

optics because, through experimental techniques and through other

analytical methods, it has been verified that fields do exist in shadow

regions of the geometrical optics field, discontinuities in the field do

not exist as an observation point passes from an illuminated region to a

shadow region, and infinite fields do not exist at caustics of the

geometrical optics field.

A comprehensive overview of the techniques of geometrical optics

has been prepared by Deschamps [6] and describes the origins of the

theory as well as Its validity In comparison to more complex methods

based on rigorous Interpretation of Naxwell's equations. The details of

geometrical optics reflection from conducting plates have been worked

out by Lee [7]. The theory Is very well defined and has been refined

over many years to Include most of the dominant features of

electromagnetic waves; namely, Intensity and phase variations,

polarizations, wavefront curvatures, reflections, refractions, caustics,

and Interference phenomena In homogeneous or Inhomogeneous media.

Deschamps [6] offers an Interesting analogy between the relatlonshJp of

ray optics and wave optics to the relatlonshlp of classical mechanics

and quantum mechanics because of the nature of the problems which can be

solved by each.

3.3 Geometrical Theory of Diffraction

The Geometrical Theory of Diffraction, originated by Keller [I],

Is an extension to geometrical optics to remove shadow regions of the
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geometrical optics field by introducing diffraction mechanisms by which

a ray can be scattered when incident on an edge of a conducting object.

By the addition of these diffrac_ed fields, rays are allowed into

regions which might otherwise have been in shadow. In addition, the

diffracted fields also modify the total field strength in regions which

are illuminated by the reflected and refracted fields. The

disadvantages of Keller's diffraction theory is that the diffracted

fields become infinite at the boundaries of shadow regions, and are

inaccurately large near the shadow boundary.

Kouyoumjtan and Pathak [2], [3] brought significant improvement

to Keller's diffraction theory by a more exact evaluation of the

diffraction coefficients which simultaneously removed the singularities

in Keller's coefficients near the shadow boundaries and guaranteed

continuity of the field when crossing a shadow boundary. By the methods

of [2] and [3], the Geometrical Theory of Diffraction can be applied to

edges or curved surfaces on conducting bodies. The improvement of the

diffraction coefficients established the geometrical theory of

diffraction as a powerful tool in electromagnetic analysis. Commonly,

Kouyoumjian and Pathak's diffraction theory is called the Uniform Theory

of Diffraction (UTD). In this document, when reference is made to the

Geometrical Theory of Diffraction (6TD), it is understood that the

improved diffraction coefficients are utilized. In addition, only the

term GTD (or UTD) may be used to identify the combination of geometrical

optics and geometrical diffraction since the geometrical optics field

can be shown to be the leading term of a Luneberg-Kline series from

which the diffraction terms are extracted.
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3.3.1 Normal and Oblique Incidence

A general edge geometry is illustrated In Fig. 3-2. The edge is

the vertex of the angle formed by two perfectly conducting flat

surfaces. The included angle between the two surfaces is referred to as

the wedge angle WA. Using the ray techniques of geometrical optics the

surface would be expected to cast a shadow in the region not directly

visible to the source, and in this region the geometrical optics field

would be identically zero. The incident shadow boundary llne in Fig.

3-2 marks the extent of this shadow region. An abrupt discontinuity in

the geometrical optics field exists across this boundary.

Since the surfaces are perfectly conducting, they also cause a

reflected geometrical optics field to exist in regions where Snell's Law

of Reflection can be satisfied. In regions where no point of reflection

can be located, no reflected field will exist. The reflected shadow

boundary llne in Fig. 3-2 defines the extent of the region in which a

reflected field may exist. Another abrupt discontinuity in the

geometrical optics field is created along this boundary.

To remove the discontinuities in the geometrical optics field,

the edge is said to diffract an incident field into all space

surrounding the wedge. The diffracted field Is added to the geometrical

optics field to assure continuity across the incident and reflected

shadow boundaries. In this way, the diffracted field refines the

geometrical optics field to bring the approximate analytical solution

closer to the exact boundary value solution in all space.

The diffraction phenomenon is not limited to two-dlmensional

geometries, and it can be illustrated for a general three-dlmenslonal

wedge shown in Fig. 3-3. Figure 3-2 can be considered to be the
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projection of Fig. 3-3 into the plane perpendicular to the edge at the

diffraction point Q. In the theory, the diffracted ray Is sald to lie on

a cone generated as the locus of all directions from the dlffractlon

point such that the angle subtended by the incident ray and the edge is

equal to the angle subtended by the diffracted ray and the edge. This

cone has conventionally been termed the Keller cone, and it Is not

merely a theoretical contrivance but has been shown to exist

experimentally [35]. For any glven source and observation polnt, the

diffraction is normally ]lmlted to one point (or at most a flnJte number

of points) on the edge, unless the observation polnt happens to be at a

caustic of the diffracted field. If no point can be located at which

the Keller cone crlterlon can be satisfied, no diffracted ray can exist

unless the method of equlvalent currents, as described in Section 3.3.2,

is utlllzed.

To determine the field diffracted from an arbltrarlly oriented

edge, an edge fixed coordinate system Is constructed, as shown In Fig.

3-3 such that e z is a unit vector along the edge, e x Is a unit vector

perpendicular to e z and lying in one face of the edge, and ey=ezXe x. A

dlffractlon point O is then located on the edge such that if s' Is a

unit vector from the source to the diffraction polnt and s ls a unlt

vector from the diffraction point to the observation polnt, then the

condition

s' o e z . s o e z - cos _o (3-1)

holds so as to guarantee that the diffracted ray subtends an angle from

the edge identical to the angle subtended by the incident ray and the

edge. This ensures that the diffracted ray lles on the Keller cone.

Relative to the diffraction point, coordinate vectors associated

with the incident and diffracted rays are defined by
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Fig. 3-3. Geometrical diffraction at oblique incidence.
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A _ A

ezX S I
_a = S X eZ qao ffi

lezx;'l (3-2)

F = s x Fo = s' X o

These coordinate vectors compose a ray-fixed coordinate system which

reduces the complexity of the diffraction formulation. The incident

field at the point of diffraction, _t(Q), is decomposed Into two

A

components which are parallel to the _o and Fo directions, respectively,

EFt(Q) = ;o o _i(Q) (3-3)

(Q) = _o o El(Q) (3-4)

The diffracted field due to the diffraction from the edge. as a

function of distance from the diffraction point, is given by [8]

EFd(s ) Ds 0 E i(Q)Fo= ---L-1 A(s,s') e -jks (3-5)
l

E_dls) sln_o 0 Dh E_oIQ)

and the total diffracted field, as a function of the distance s from

the diffraction point Q Is

_Fd(s)_d(s) - ; + E_d(s); (3-6)

The factor A(s,s') is known as the spatial attenuation factor and

Is given by

A(s,s') =

/.' s(s+s')

for plane and cylindrical
wave Incidence (3-7)

for spherical wave Incidence

The factor L, known as the distance parameter, is defined as



L

= f s sln=FoS S, sJn2j_ °

S + S _

for p]ane and cylindrical
wave lndidence

for spherical wave incidence

(3-8)

According to the geometry of Fig. 3-3, s' Is the dlstance from

the source to the diffraction polnt, and s is the distance from the

diffraction to the observation point.

The diagonal matrix elements, Ds and Dh, are referred to,

respectively, as the soft and hard polarization diffraction

coefficients. In general, Ds and Dh are function of the distance

parameter L, the incident and diffracted angle _ and _o'

wedge parameter n

n = 2 - WA (3-9)

where WA is the interior wedge angle as shown in Fig. 3-2.

The diffraction coefficients Ds and Dh are given as

and the edge

D s = Ds(L,_,_o,n) = Di(L,_-_o,n) - Dr(L,_+_o,n) (3-10)

Dh = Dh(L,_,_o,n) = Di(L,_-_o,n) + Dr(L,_+_o,n) (3-11)

and Dr are referred to as the incident and reflected diffractionD i

coefficients and are given by [8]

_e_ J_

Di(L,_-_o,n ) = x

( C+(*-*o 'n) F[kLg+(*-_o )]

Dr(L,_+_o,n ) = -e-J_ ×

(3-12)

+ C-(q'-'Po,n) F[kLg-(LF-*o) ]

(3-13)

+ C-(,+_o,n ) F[kLg-(,_Po)] _(C*(_P+_o,n) F[kLg*(_Po) ]

The C and F functions are defined as

26
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C÷(_o,n) -_ cot I'+ (_'t_o). 1
i 2n

cot[ _-(_° )][

- ) e jkLg+ (q_Po) x

e -jI"2 d'r

#/kLg+ (_o)

F[kLg-(q_po) ] = 2j4_Lg-(_po)eJkLg-(_'_Po)x

where

g+(_'_o

g-(U s

) = 1 + cos[ (_Po)-2n.N + ]

) = 1 + cos[ (_Po)-2nnN- ]

N÷ and N- are the integers which most nearly satisfy

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

(3-19)

The F function involves a Fresnel integral and can be computed

efficiently using a numerical algorithm given in [36]. A FORTRAN

computer subroutine which uses this algorithm to calculate the

diffraction coefficients D s and Dh can be found in [8] or in [37].

In radar cross section analysis, where the source and observation

point recede to infinity, the distance parameter L increases to

infinity. The argument of the F functions then becomes large

2nnN+ - (q_Po) = +n for g- (_o) (3-20)

2nnN- - (U s) = -n for g+(q_Po ) (3-21)
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÷

everywhere except at the single points where g-(_o ) or g (q_o) equals

zero. With the exception of these points, which happen to be along the

incident and reflected shadow boundaries, the F functions can be shown

to approach unity, and the diffraction coefficients reduce to those

originally proposed by Keller where [8]

Ds = (_P'_o_. (3-22)- oo,(-)- --

_/_w LnJWI _1 + Ie-J;sinr l cos( _. o (3-23)Dh
--.__.... cos(n, - cos ) cos -

The terms in these expressions become infinite as a shadow boundary is

approached. At the shadow boundaries, _+_o or Y-_o equals _, and hence

one of the denominators in the expressions for Ds and Dh will be zero.

The diffraction coefficients contain certain symmetries due to the

cylindrical symmetry of the wedge geometry of Fig. 3-3, and due to

reciprocity. To satisfy the wedge symmetry, the diffraction

doefficlents Ds and Dh satisfy

Ds,h(L,_,_o ,n) = Ds,h(L,n_-_,nn-_o,n) (3-24)

and to guarantee reciprocity, the diffraction coefficients satisfy

Ds,h(L,_,_o,n) = Ds,h(L,_o,_,n) (3-25)

These identities can be used to advantage in certain configurations.

3.3.2 Equivalent Current Method

The method of equivalent currents is introduced to the theory of

geometrical diffraction to predict field distributions when no

diffraction points exist, or to predict fields at caustics when an
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infinite number of diffraction points exist. It Is quite simple to

envision object geometries for which there are no diffraction or

reflection points but for which the scattered field is experimentally

nonzero. For these geometries, the method of equivalent currents can be

used to determine the total field. Many of the early papers credit a

series of three monographs by Millar as the basis for the equivalent

current method [36]-[40].

The equivalent current method has been used by Ryan and Peters

[4], by Knott and Senior [5], [27] and by Slkta, e__t al_.__. [21], [23].

This technique defines an edge current on the diffracting wedge which

produces a field on the diffraction cone identical to the field

predicted by the diffracted ray. The equivalent current obtained can

then be used to find the fields diffracted in directions away from the

diffraction cone or in directions of caustics. These currents are

nonphysical In the sense that they depend not only on the incident field

direction but also on the observation direction.

The equivalent edge currents can be either electric or magnetic

in nature, and they are determined in terms of the components of the

incident electric and magnetic fields which are parallel to the edge

vertex. The equivalent currents are expressed as

where

Ie ffi_ e-J_ Eiz(Q) Ds(L,_,_o ,n)

m e-J Vh(L.V,Vo,n)
Iz = S--T_0

(3-26)

(3-27)



i i
Ez , H z

Ds , Dh

= the incident electric and magnetic fields

parallel to the edge at the polnt of

diffraction

30

= the diffraction coefficients of (3-10) and (3-11)

me

From the equivalent currents, the magnetic vector potential A and

the electric vector potential F can be found by integrating the

contributions of infinitesimal current elements. From the vector

potentials, the diffracted electric and magnetic fleids may then be

obtained. The equations which are used in thls procedure are presented

in Chapter 4 as they form an essential part of the Physical Theory of

Diffraction. The diffracted fields from the equivalent current method

are found In all space although diminishing accuracy should be expected

as the observation point moves away from the Keller cone.

3.4 Application to Backscatter Analysis

The theory of geometrical optics can satisfactorily predict the

fields backscattered from conducting objects provided that a specular

reflection point exists on the object, the specular point is not near to

an abrupt discontinuity such as an edge, and the object is doubly curved

at the specular point [25]. The radar cross section under these

conditions is

where

a = .ala a (3-28)

a = the radar cross section

a I, aa - the prlncJple radii of curvature of the
body at the specular point.

From this formula it Is evident that If the body Is singly curved (i.e.
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a cylindrical structure) or the body is planar (i.e. a flat plate) then

one or both radii will be infinite. The radar cross section is then

infinite for single curved or planar structures provided a specular

point exists. However If no specular point exists on the conducting

surface, then the cross section is identically zero.

The diffraction coefficients of the geometrical theory can become

less convenient to use when applied to radar cross section analysis.

The diffraction coefficients of (3-10) and (3-11) revert to the original

forms proposed by Keller, as given in (3-22) and (3-23), as the distance

parameter for the single diffracted fields becomes unbounded.

Unfortunately these diffraction coefficients are plagued by

discontinuities near incident and reflection shadow boundaries. For

backscattering from a straight edge Joining two planar surfaces, the

diffraction shadow boundary occurs at an aspect normal to either planar

surface.

Considering the reflected and diffracted field from a flat

surface bounded by straight edges, it is evident that at normal

incidence the backscatter cross section due to geometrical optics and

the backscatter cross section due to geometrical diffraction from an

edge are both infinite. Fortunately, however, It is possible to use the

theory in certain cases if the cross section is found at some finite,

yet large, distance from the object (rather than at an infinite

distance). As the finite distance increases, the cross section will

approach some finite value for all aspects. A rule which can be used

for choosing the minimum distance of observation is given by the

"far-field" criterion [8]



32

where

Rmi n = 2 Da/ (3-29)

RAin

D

= the minimum distance

= the maximum dimension of the target

= the free space wavelength

Ross [17] showed that for the rectangular flat plate the

diffraction coefficients for each edge were infinite near normal

incidence but the singularities from each edge cancelled against each

other to yield finite cross sections at all aspects for the singly

diffracted field. This occured because the edges are mutually parallel

and the edge parameters n are identical. Sikta [21], [23] used this

property in his analysis of a general polygonal plate by subdividing

each polygon into a number of rectangular strips to ensure continuity of

the diffracted field near normal incidence. It is shown in Appendix A

that the diffracted field singularities will mutually cancel regardless

of the edge wedge angles provided the edges are mutually parallel. This

is an important result because it allows the subdivision of a general

geometry into rectangular strips so that the theory is not limited

solely to flat plates.

The geometrical theory works well for the analysis of truncated

two-dlmensional objects as described in Section 2.2 whenever the objects

are formed of flat surfaces bounded by straight edges. If a target is a

more general three-dimensional object, three other methods may be

considered for the analysis. One method would be to subdivide a general

three-dlmenslonal target into rectangular segments following Slkta [21],

[23], and incorporating the equivalent current method. A second method
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utilizes the corner diffraction coefficients elplrlcally proposed by

Burnside and Pathak [21], [22], [23]. The seLl-heuristlc corner

diffraction coefficient was used by Slkta in the analysis of polygonal

flat plates, and it is applicable to corners forled by the intersection

of a pair of finite straight edges (as on a polygonal flat plate). This

is one type of corner which is collonly found on Lore complex structures

such as the dihedral corner reflector. A third lethod utilizes the

generalized equivalent edge current theory presented by Michaell [9],

[10], [25], [29]. The equivalent edge currents presented by Mlchaell

can be used to determine the diffracted flelds from an edge given

arbitrary directions of illumination and observation. The expressions,

however, are fraught with singularities, much llke Keller's diffraction

coefflcients. Perhaps cancellatlons in these singularities can be found

to allow appropriate solutions to be obtained for certain geoletrles.



CHAPTER4

PHYSICALTHEORYOFREFLECTIONANDDIFFRACTION

4.1 Introduction

The combination of Physical Optics (PO) and the Physical Theory

of Diffraction (PTD) can be used to provide approximate expressions for

the fields scattered by a conducting object. The theory evolves from an

approximation of the current densities on reflecting surfaces and the

edge currents on diffracting edges, from which the scattered fields can

be computed.

The methods of physical optics and physical diffraction provide

an alternative to the more difficult solution of the boundary value

problem associated with a given scattering geometry. These methods

share many of the advantages of the geometrical theory in that the

solutions can be solved in terms of elementary functions, and the

results provide a clear understanding of which reflection and

diffraction mechanisms are most important for a given angle of

observation. Unlike the geometrical theory, however, the physical

theory includes an intermediate step when finding the scattered fields;

namely, the currents on surfaces and edges must be determined in terms

of the incident fields. From these induced currents, the scattered

fields can be computed through conventional methods utilizing the

radiation integrals of electromagnetlcs. The geometrical theory, in

contrast, determines the scattered fields directly in terms of the

incident fields and circumvents the need to perform tedious or costly

integrations (an exception being the method of equivalent currents of
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Section 3.3.2).

The physical optics theory, unlike geometrical optics, can

predict fields in directions which do not satisfy Snell's Law of

Reflection and thereby avoids the discontinuities in fields associated

wlth geometrical reflection and shadow boundaries. Knott [25] discusses

the usefulness of the physical optics theory and asserts that the theory

is acceptably accurate for flat and singly curved surfaces. Harrlngton

[15] provides an explanation of the method of physical optics in the

context of electromagnetic integral equations.

4.2 Physical Optics

The theory of physical optics stems from a study of the

reflection of a plane wave from a perfectly conducting plane which is

infinite in extent. The current density on a flat conducting surface

which is infinite in extent is given by

where

Js " n x H t (4-1)

Js

J

Ht

n

- the surface current density

= the total magnetic field on the surface of

the plate

= a unit normal to the plate

For an incident plane wave, the total tangential magnetic field is twice

the incident tangential magnetic field so that [15]

where

md d

Js " 2n x "i (4-2)
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H1 = the incident magnetlc field of the surface

of the plate
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Equation (4-2) Is used as an approximate solutlon for the current

density on any perfectly conducting locally smooth surface which has

finite dlmenslons. It Is commonly referred to as the "physical optics

approxlmatlon'. For a genera] conducting object the Incident field Is

taken to be the ray optic incident field from the source, and the

current is sald to exist only in the ll]uminated portions of the

conducting object where the direct source rays or reflected source rays

Implnge upon the object. In thls manner the theory of physlcal optics

uses the Idea of straight line ray paths from geometrical optics for

determining illuminated regions of an arbitrary surface. If the

geometrical optics lncldent field In a reglon of the object Is

Identically zero because no Incldent rays exist from the source to the

reglon, then the physical optics current in thls region is Identically

ZerO.

Once the surface currents over a conducting object are determined

vla the physical optics approximation, the reflected field due to the

surface current denslty can be determined by first finding the magnetic

vector potential As by [8]

_ e-jkR

where

(4-3)

As = the iagnetlc vector potential

= the permeability of free space

R = the distance from an infinitesimal surface
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current element to the point of

observation

The surface integration is performed only over the illuminated portion

of the conducting surface. The field due to the potential can be found

by [8]

_s s _v (v- As ) (4-4),, _j_ _ j I "

which reduces, in the far field to

where

_s " -J'_s (4-s)

d

ES = the reflected electric fields

= the source radial frequency

P = the permeability of the medium

E = the permittivity of the medium.

Although the radial component of the field is typically nonzero, it is

taken to be zero in the far field because its value is much smaller than

the 8 or $ components.

An issue of concern in physical optics analysis is the method of

determining the fields due to double reflection; that is, fields which

reflect from one conducting surface, are incident upon and reflect from

a second conducting surface, and are subsequently received at the point

of observation. The method of determining these double reflected fields

can take the following two forms:

a. The first and second reflection can be performed using

physical optics integrations over the illuminated portion

of the reflecting surfaces.
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b. The first reflection can be performed using simple

geometrical optics ideas and the second reflection can be

performed using a physical optics integration over the

illuminated portion of the second surface.

The first of these methods is generally the more complex, involving

multiple integrations and differentiations over what may be complex

geometries; however, it often gives superior results. The second

method, used previously by Knott [18], can greatly reduce the complexity

of the field calculations for certain configurations. This second

method is justified by the argument that the physical optics currents

are conventionally found in terms of the incident geometrical optics

fields, and the incident field could come from a source or from the

image of a source.

4.3 Physical Theory of Diffraction

The Physical Theory of Diffraction, formulated by Ufimtsev

[11]-[13], supplements the physical optics theory by adding

contributions due to diffractions at the edges of conducting surfaces.

These diffracted fields serve to refine the physical optics fields to

account for edge effects which are not considered in the physical optics

approximation. The diffraction coefficients are incorporated to include

the nonuniform fringe currents which exist near the edges of a

conducting object, in addition to the uniform physical optics currents.

The diffracted field can be determined in one of two ways in a

manner very much analogous to the method of geometrical diffraction. In

one method, the diffracted fields are found directly in proportion to

the incident field and a diffraction coefficient. In the second method,
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an intermediate step of finding equivalent edge currents is introduced,

from which the edge diffracted fields can be found using a line

integration of differential current elements. This second method is

extremely useful for complex three-dimensional objects and ts chosen as

the focus of the physical diffraction formulation here because It allows

fields to be calculated off the specular scattering direction. It is

worth noting that a third method by Xitzner [14], [25], [29] develops an

Incremental length diffraction coefficient (ILDC) which allows fields

off the specular direction to be determined. Knott [25] maintains that

the ILDC formulation ts essentially a description of equivalent

currents.

For the general case, the equivalent currents considered in the

physical theory of diffraction must be both equivalent magnetic

currents, Ie, and equivalent electric currents, _. The diffracted

electric field can then be determined from the magnetic vector potential

and the electric vector potential _. The potentials are [8]

e-JkR

"F =-_¢ S1 Im e-JkRR

d] (4-6)

dl
(4-7)

and the scattered electric field is

.I .d
.. d 1 g

_..--j_A- j_-_v ( v o A ) --_vx F

In the far field, the e and _ components are given by

(4-8)

E " -JuA + J_tl a r x F (4-9)
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Although the radial component is nonzero, it is taken to be zero since

it is much smaller than the e or $ components. The llne integrations of

(4-6) and (4-7) are performed only over the illuminated portion of the

diffracting edge.

If the edge is taken to be parallel to the z axis, as shown in

Fig. 4-2. the equivalent currents are given in [16] as

e 2 fl EziI z = j-_

m 2 i
Iz = J-_-_ g_ Hz

(4-1o)

(4-11)

where

e
I z , Izm = z-components of the equivalent electric

and magnetic currents

i i
Ez , Hz = z-components of the incident electric and

magnetic fields at the diffraction point

= the source radial frequency

P,_ = the permeability and permittlvlty of the

medium

The functions fl and gl are similar to Keller's diffraction coefficients

Ds and Dh in (3-22) and (3-23) and are given by [16]

where

f_ = f - fo (4-12)

gl = g - go (4-13)

f = _sin_ 1
cos(-_)- cos(_ °)

• .[ Ig = _sl_ cosc-_l- cos_ °)

=,

- (4-14)

+ 1 1
cos(_) - cos(_ "_°) (4-15)
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Since the diffraction coefficients are functions as the direction of

observation, the equivalent currents are said to be non-physical because

any real physical currents should be independent of the observation

direction.

Although f and g become infinite at the shadow boundaries, the

singularities are cancelled by singularities in the f0 and go

functions. Expressions for the f0 and go functions at these shadow

boundaries are available in [11] and in [16]. However, as described in

[41]. computers are notoriously inaccurate when subtracting two large

numbers whenever the difference is small, and, therefore, precautions

should be observed.

The fo and go functions are given by [16]

fa
fo = fa+fb

fb

0 < _o < (n-l)n

(n-l)n < _o -< n (4-16)

gago ffi ga+gb

gb

0 < _o < (n-1)w

(n-1)n' < _o < _

ff < ?o < nn

(4-17)

where n is the edge parameter given by (3-9). Here

sln_ o

fa = cos_ + cos_P o (4-18)

-sln_

ga = cos_ + cos_ o (4-10)

sln(n.-_ o )

fb = cos(nn-_) + cos(n_-_ o) (4-20)

-sin(n._)
gb = cos(n_--_P} + cos(n_--_ o)

(4-21)

Expressions (4-16) through (4-21) are valid for n>l; that is for the

exterior edge diffraction case. Expressions are given in [16] for the
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fl and gl diffraction coefficients when n<l, and these expression are

derived to conslder the existence of multlply reflected fields. In

addition, expressions for fl and gl are given near the lncldent and

reflected shadow boundaries for both the Jnterlor and exterlor

diffraction coefficients.

4.4 Application to Backscatter Analysis

The theory of physical optics and physical diffraction, as

presented here, provide a convenient method for determining the

scattered field from a given conducting object. The approximate surface

currents and equivalent edge currents are uniquely defined In terms of

the incident fields, where the incident fields are normally taken to be

the ray-traced geometrical optics fields, except In the case of multiple

reflections. For multiple reflections either geometrical or physical

optics could be used for the Inltlal reflections, with the physical

optics integration being performed over the final reflection.

A formulation for determining the reflected field from conducting

flat surfaces bound by straight edges, assuming an incident plane wave,

has been presented In [16]. For a flat surface bounded by straight

edges which Is illuminated by a plane wave, the surface integrals of

physical optics can be resolved, In general, in closed form expressions

involving elementary functions. Similarly the line integrations of

physical diffraction can be resolved Into closed form expressions. Then

for the class of objects formed of such surfaces and edges, analysis of

the backscatter fields, and hence the backscattered cross section can be

methodically formulated.
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The theory of physical optlcs and physlcal diffraction provldes a

powerful tool for analyzing backscatter from objects whenever the

objects are composed of a conglomerate of flat surfaces bound by

stralght edges or surfaces which can be sufficiently approximated by

subdivision lnto flat surfaces. The theory is sufficiently general for

three dimensional objects to allow automated solutions to

electromagnetic scattering problems, and this is one of its most

appealing traits. The problem normally becomes most dependent on the

mastering of the geometrical orlentatlons of a target. The intent is to

discern, for arbitrary aspect angles, the illuminated portlons of each

surface and the illuminated portions of each edge, so as to identlfy the

contrlbutlons to the total fleld by mechanisms of first and higher order

reflections or diffractions. The decomposition of an object geometry

can be a complex and formidable task Ifa general method applicable to

any arbitrary configuration is desired. In the analysis, the second and

higher order reflections would, reallstlcally, have to be performed

using the comblnatlon of physlcal and geometrical optics described

previously. This method retains the plane wave structure of the

reflected wave so that the physical optlcs integrations can be performed

in closed form. In later chapters and In Appendlx B, an example is

given of the method of determining a double reflected field using solely

physical optics. The resulting expression is a complicated quadruple

integral which must be integrated numerically. Thls method is not

considered feasible for a manageable automated method of solution, but

it can be used in less complex geometries to provlde an Improvement In

accuracy.



CHAPTER 5

GEOMETRICAL THEORY ANALYSIS OF A CORNER REFLECTOR

5.1 Dihedral Geometry

The usefulness and accuracy of geometrical optics and the

geometrical theory of diffraction can best be evaluated through a study

of the radar cross section of a complex object. The object which has

been chosen for this study is the dihedral corner reflector shown in

Fig. 5-1. This corner reflector Is comprised of two rectangular flat

conducting plates which are Joined along an edge, forming an interior

angle of 2_. The dihedral corner reflector is oriented such that Its

vertex is along the z-axls and the bottom edges lie in the x-y plane.

The monostatlc radar cross section Is computed analytically In the

azimuthal plane where e = 90° and 0° < $ < 360 °. The two cases of

vertical and horizontal polarization are considered, where the

vertically polarized radar cross section is determined using the

components of the incident and scattered electric fields which are

parallel to the z-axls, and the horizontally polarized radar cross

section is determined using the components of the incident and scattered

electric fields which are perpendicular to the z-axls.

5.2 Nethod of Analysis

The best technique to flnd the backscattered fields from the

dihedral corner reflector begins by considering the dihedral to be a

truncated two-dlmensional object, as described in Chapter 2, which is

illuminated by an incident cylindrical wave. If the radar cross section

per unlt length of the corresponding two-dimenslonal dihedral can be
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Fig. 5-I. Dihedral corner reflector geometry.



48

found, the radar cross section of the truncated dihedral can be found

using (2-3). The cross section of the two-dimensional dihedral is shown

in Fig. 5-2.

It is necessary to develop some strategy for naming scattering

mechanisms from both geometrical optics and geometrical diffraction.

Toward meeting this requirement, a naming convention has been developed

in which each edge diffraction and each surface reflection is assigned a

unique number as follows:

- The diffraction from the exterior edge of plate I is assigned the

number 1.

- The reflection from the surface of plate I is assigned the number

2.

- The diffraction from the edge where plate I joins plate II is

assigned the number 3.

- The reflection from the surface of plate II is assigned the number

4.

- The diffraction from the exterior edge of plate II is assigned the

number 5.

With this notation, every possible component of the backscattered field

can be assigned a unique number describing the sequence of reflections

and diffractions. The component is specified by a coalescence of the

digits of the individual scattering mechanisms. The notation adopted

here is to precede each component by a capital letter C to identify the

t

digits as the description of a component of the backscattered field.

The order of the digits defines the order of occurence of the Individual

reflections and diffractions. As an example, the notation C251 uniquely
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CoMponen± (_),

Edge di??ractlon

In_erlor or ex±erlor)

CoMponent _, A _W

Sur?ace re?lec±ion

Component (_);

Sur?ace

re?lectlon

_ Componen± (D,

Edge dl?£ractlon

CoMponent (_),

Edge di??ractlon

Fig. 5-2. Dihedral corner backscatter nomenclature.
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defines the component of the total backscattered fleld which is due to

reflection from plate I (reflection 2) followed by diffraction from the

outside edge of plate II (diffraction 5) and diffraction from the

outside edge of plate I (diffraction 1). The final diffraction direction

should be toward the original direction of Incidence for the monostatic

case. Some typical scattering mechanisms are shown In Flg. 5-3.

Using the described notation, the total backscattered field can

be found as a summation of the following terms:

- Components due to single reflections.

* C2 C4

- Components due to single diffractions.

* Cl C3 C5

- Components due to double reflections.

. C24 C42

- Components due to one reflection and one diffraction.

8 C14 C41 C25 C25

- Components due to two diffractions.

s C13 C31 C53 C35 C15 C51

- Components due to three reflections.

8 C242 C424

- Components due to two reflections and one diffraction.

8 C252 C414 C142 C241 C524 C425

- Components due to one reflection and two diffractions.

C141 C525 C125 C251 C514 C415

C253 C352 C413 C314

- Components due to three diffractions.



C5 C52

51

C51 C24

C425 C513

Fig. 5-3. Examples of components of the geometrical optics and
geometrical diffraction backscattered field.



s C131 C535 C135 C531 C153 C351

C513 C315 C151 C515 C313 C353
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All these components, and one other to be discussed later, are included

in the analysis of backscatter of the dihedral corner for the

horizontally polarized case. For the vertically polarized case,

however, the components which include multiple diffraction between two

edges of the same plate will vanish due to the nature of the diffraction

coefficients, which impose the electromagnetic boundary condition that

tangential electric fields to a perfect conductor are identically zero.

These components,however, would be nonzero if the slope diffraction

coefficients [37] of GTD were utilized.

For a target composed solely of flat plates, the method of images

becomes especially convenient for cross section analysis. In a

cylindrical coordinate system, as shown in Fig. 5-1, the source and all

subsequent images for the dihedral corner lie in the x-y plane, so that

the coordinates of the location of all images can be tabulated using

only the P and _ coordinates while the z coordinate will always be

identically zero. The location of the source, diffraction points, and

all images of the source can be tabulated using the geometry of Fig.

5.1. Here R represents the distance from the source to the vertex of the

dihedral corner, and A is the length of one edge of the dihedral

corner. The locations of the source, images, and diffraction points are

given in a cylindrical coordinate system (p, _, z), as

- the source location:

P = (R, #, O)

- the location of the point of diffraction on edge I:



P - (A, 2.-a. O)
1

- the location of the point of diffraction on edge 5:

Ps = (A. a, O)

- the location of the point of diffraction on edge 3:

Pz = (0, O, O)

- the image of the source through surface 2:

Pa " (R. o)

- the image of the source through surface 4:

P4 = (R, 2a-_, O)

- the image of Pz through surface 4:

P24 = (R, 4a+#-4n, O)

- the image of P4 through surface 2:

P4a : (R, 2n-4a+_, O)

- the image of Px through surface 4:

Pt4 = (A, Za, O)

- the image of Ps through surface 2:

Psa = (A, 2n-3a, O)
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Next it is necessary to find the distance between any two points

for the geometrical theory. If any two points Pa and Pb are given in

terms of their cylindrical coordinates, then the distance D, between Pa

and Pb' can be found by

1

V = [ paa + pb a - 2PaPbCOS(,a-,b ) + (Za-Zb)2 ]_ (5-1)

The diffraction coefficients Ds and Dh include a parameter, n,

which is defined in terms of the edge wedge angle, WA, as given in

(3-9). For the dihedral corner reflector, four edge parameters can be
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- diffractions from edge 1:

WA = 0 , n I = 2

- diffractions from edge 5:

WA ffi0 , ns ffi2

- diffractions from the interior of edge 3:

WA = 2n-2a , nsl = 2a/n

- diffractions from the exterior of edge 3:

WA ffi2a ,nse ffi2(I-a/_)

It is necessary to determine if a given component exists for a

given direction of aspect. In geometrical optics, a reflected field can

only exist if a specular point exists on the conducting surface so as to

satisfy Snell's law of reflection. Similarly in geometrical

diffraction, a diffracted field can only exist if a specular point

exists such that the diffracted rays lle on the Keller diffraction cone

(this condition can be removed if the method of equivalent currents is

utilized). Associated wlth each reflection or diffraction are two

locations: the originating location from which the incident ray is

radiated and the terminating location at which the ray is observed. In

a sequence of reflections and diffractions of a single ray, there is one

originating location and one terminating location associated with each

individual reflection and diffraction. The originating locations are

the locations of the preceding source or edge diffraction while the

terminating locations are the subsequent observation or edge diffraction

locations.

For a given reflection to exist, the ray from the originating
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locatlon to the associated terminating location must pass through the

reflectlng plate. In this case, either the originating or terminating

location is actually an image of a preceding or subsequent source or

diffractlon point. If the originating point is given in terms of its

rectangular coordinates in the x-y plane as (Xa,Ya), and if the

terminating point is given in terms of its rectangular coordinates In

the x-y plane as (Xb,Yb), then the llne through the two points Is given

as

y ffi X +

t x b x a J
(5-2)

A point on the plates of the dihedral, in the x-y plane can be

given in terms of its cylindrical coordinates where _ = 2_-a on plate I

and _ = a on plate II. The radial distance of the intersection of the

ray and the plate is then

p

(Yb -

YaXb - YbXa

Ya)COS# - (xb - Xa)Sin#
(5-3)

The reflection exists if p lles in the range 0 < p < A where A is the

width of the dihedral plates. Equation (5-3) ha_ no solution if tan _=

(yb-Ya)/(Xb-Xa), and hence no reflection can exist.

For any reflectlon-diffractlon sequence which begins or ends with

a reflection, the reflection surface must also be visible to the source

and observation points. For the monostatlc cross section of the

dihedral corner, the plates are visible or partially visible at certain

aspects.



For reflection 2, the surface is

- entirely visible if O<#<a or .-a<#<2n

poo_ 1
- not visible If cos-tiT ] <#<_--a

- partially visible elsewhere.

The visible portion of the plate is given by

Asln(#-a)
sln(#+a) _ P _ A

For reflection 4, the surface is

- entirely visible if O<#<.+a or 2.-a<#<2.

- not visible if .+cx<#<2.-cos -I rAcos-al
L_J

- partially visible elsewhere.

The visible portion of the plate is given by

Asin(#+a)
sln(#-a) _ P _ A

(5-4a)

(S-4b)

(5-4c)

(5-5a)

(5-5b)

(5-5c)
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In terms of the diffractions mechanisms, all diffractions, if

they exist, lie on the Keller cone for a truncated two dimensional

geometry. A particular diffraction will exist if the diffracting edge

For the dihedralis visible from the source and observation point.

corner reflector

- Edge I is visible if

°<a<c°s-1t--'_J or

- Edge 3 is visible if

O<#<_x or 2.-_=<#<2_

=<#<2w._

- Edge 5 is visible if

O<#<.+a or

.-=<#<2. (5-6a)

(interior diffraction)

(exterior diffraction)

rAcos__I2"-c°s-1 L""_J <#<2.

(5-7a)

(5-7b)

(5-8a)
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The angles _ and _o of the diffraction coefficients of Section

3.3 are found from geometrical considerations. The angle _o Is the

angle between the wedge face and the ray from the originating point to

the diffraction point. The angle _ is the angle between the wedge face

and the ray from the diffraction point to the terminating point.

Locating the originating or terminating point by its rectangular

coordinates In the x-y plane (x a, ya ), the corresponding angle, _o or _,

can be found

- on edge 1 as

- on edge 3, for interior diffraction as

= a + tan -I Y[_ - Y_]

- on edge 3, for exterior diffraction as

_se = -= + tan-l[ Pa-Lxa Y=_]

on edge 5 as

= -a + tan -I YI'- - Y--I
_s

Lxa XsJ

(5-9)

(s-zo)

(s-11)

(5-12)

where PI' _si' _=e' or _s can represent either _ or _o for a given

diffraction, and where (xj, yj) are the coordinates of edge J for j =

1,3,5. In the application of these equations, particular attention must

be paid to the angle of the inverse tangent function. The angle of

tan-1(y/x) lles In

- quadrant I If y > 0 and x > 0

- quadrant II if ¥ > 0 and x < 0
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- quadrant III If y < 0 and x < 0

- quadrant IV If y < 0 and x > 0

and the angle is chosen such that the diffraction angles, _ and _o will

lie In the range 0 _ _ _ 2n and 0 _ _o _ 2n.

Although the diffracted field from a pair of parallel edges is

continuous, as Is discussed in Section 3.4, cases may exist where both

edges of a plate may not be visible near normal Incidence. This

normally occurs because another unrelated object passes In the line of

sight from the target to the radar. Such is the case, for example, In

the 90 ° dihedral corner for $ slightly greater than 45 ° when Plate II

obstructs the view of one of the edges of Plate I. Clearly tn cases such

as this, there is only one edge diffraction existing and the field is no

longer continuous near normal incidence.

Geometrically, under these circumstances, one portion of the

plate is illuminated while another portion is not Illuminated. An

abrupt discontinuity in the field incident upon the plate is created

because of the shadow cast by the obstructing object. Since abrupt

discontinuities must not exist, some diffraction mechanism should be

introduced to assure continuity in the radar cross section pattern. In

the analysis of the dihedral corner reflector, an edge diffraction was

imposed exactly at the shadow edge to account for the field

discontinuity. This edge position is a function of the dihedral

orientation since the shadow edge moves as the dihedral corner reflector

is rotated. This imposed edge diffraction was included If the aspect

was such that the incident field was nearly normal to one of the two

flat plates, and If, at the same orientation, the second plate cast a
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shadow across the first. The appropriate choice of edge parameter, n,

is not apparent for this Imposed edge so some discretion is allowed.

Since only a half plane Is Illuminated, it seems appropriate to select

an equivalent edge which has only one face illuminated; that Is an edge

with Included angle In the range _ < WA < 9_. Since the resulting

cross section is relatively Insensitive to the choice of n, a wedge

angle of _ was chosen: that is, n = 2 for the imposed edge.

In the backscatter analysis using the Geometrical Theory of

Diffraction, many terms in the total field are reciprocal. From the

notation of Section 5.1 it is evident that to satisfy reciprocity, the

terms C241 and C142 are equivalent, the terms C35 and C53 are

equivalent, and so on. Other terms, such as C141 and C353 have no

reciprocal pair because the sequence of reflections and diffractions is

symmetric. Intuitively it is not clear whether these symmetric terms

should be included once or twice in the total field, but it can be

shown, using the geometry of Fig. 5-4 that these terms should be

included twice to insure field continuity. Single reflections and

single diffractions, however, are not to be included twice.

In Fig. 5-4, the source/receiver and a diffracting edge (in this

case, edge 5) are illustrated along with their images through Reflection

2. A ray from the source image will diffract on the edge image and can

follow one of three paths to the receiver; either a direct path, a

reflected path (from surface 4) or a diffracted (from edge 5), as

illustrated. These three paths correspond to the three backscatter

components C52, C524, and C525, respectively, and all three terms are

required to assure continuity near the reflected shadow boundary. In
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addition, each path also has a reciprocal pair which corresponds to the

ray which leaves the source, follows one of three paths to edge 5, after

which it diffracts from the source. The three paths in this case

correspond to the backscatter components C25, C425 and C525. Again. all

the paths must exist to ensure continuity in the vicinity of the

reflected shadow boundary. In this geometry, the terms C52 and C25 are

reciprocal pairs, the terms C524 and C425 are reciprocal pairs, but C525

has no reciprocal pair. Therefore C525 must be included twice in the

analysis. This concept of including symmetrical terms twice (except for

the single reflection or single diffraction terms) may not be

intuitively obvious but seems to be analytically necessary. Any third

order mechanism which is symmetric in its sequence of reflections and

diffractions will have no reciprocal pair.

5.3 Backscatter Components

One of +h_ advantages of ,_1,,_ h_k_a++o_ ,,c_ _ho

geometrical optics and geometrical diffraction theories is that the

effects of different mechanisms can be separated so that the effect of

each structural element in the target can be identified. A nomenclature

for enumerating the different reflection-diffraction mechanisms was

formulated in Section 5.2, and it is utilized in this section to

Identify each backscatter component.

The dihedral corner reflector was studied for a right, an obtuse,

and an acute interior angle for which experimental results were

available. The radar cross section components were analyzed at a

frequency of 9.4 6Hz where the dihedral dimensions A and B were both

5.6088 _. Two polarizations were considered. The vertical polarization
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was the case In which the lncident electrlc field was parallel to the

longitudinal axis of the dihedral, and the horizontal polarization was

the case in which the electric field was perpendicular to the

longitudinal axis of the dihedral. The dihedral corner reflector

interior angles for which experimental results were available were 9_,

98 ° and 77 °

In Flgs. 5-5. 5-6, and 5-V the backscatter cross section for

vertical polarization ls illustrated for different reflection and

diffraction mechanisms as a function of observation direction _. The

total radar cross section is subdivided lnto groups of Individual

components and the radar cross section due to each group ls shown

separately. Each figure contains eighteen graphs, and each graph shows

the radar cross section of a particular group. The subdivision usually

combines only the symmetric or reciprocal components of the total radar

cross section. For examp!e, graph 1 shows the backscatter cross section

when only components C2 and C4 are considered, where C2 and C4 are the

single specular reflection components from the dihedral plates. Graph 4

illustrates the component due to the imposed edge described at the end

of Section 5.2. Graph 17 shows the cross section due solely to all the

third order diffractions which include diffraction from the vertex of

the dihedral (edge 3). These terms are all identically zero for the

vertically polarized case since slope diffraction coefficients have not

been considered. The final graph, numbered 18, shows the total cross

section as the sum of all individual components up to third order

mechanisms as described In Section 5.1. In Chapter V these total cross

sections will be compared with experimental results to illustrate the
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Fig. 5-5. (continued)
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accuracy of the geometrical theories.

The thlrd order reflections C242 and C424 were Included in the

analysis, but they are not shown In the figures because they do not

contribute for the rlght and obtuse dihedrals, and they contribute over

less then one half of one degree for the acute dihedral. The graphs of

these figures were computer generated using one-degree Increments and

hence passed over the third order reflection contribution. It has been

verified, using a expanded angular scale, that these third-order

reflections are necessary to guarantee continuity of the cross section

pattern over the half degree range through whlch they are nonzero.

In Figs. 5-8, 5-9, and 5-10 the backscatter cross section for

horizontal polarization of the 90 °, 98 ° , and 77 ° dihedral corner

reflector ls decomposed into Individual components (in a similar manner

as for the vertically polarized cases). Experimental results are not

available for this case, but horizontal polarization ls important to

consider because the multiple diffraction terms are generally stronger

for this polarization. In graph 17, all the third-order diffraction

terms which lncluded diffraction from the dihedral vertex are nonzero

for the horizontal polarization. However, all these terms were zero for

the vertical polarization. The total field is again shown in graph 18.

Unfortunately, experimental data was not available for the horizontal

polarization case so these results could not be compared with

measurements.
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CHAPTER 6

PHYSICAL THEORY ANALYSIS OF A CORNER REFLECTOR

6.1 Dihedral Geometry

The physical optics theory and the physical theory of diffraction

provide an efficient method for determining the reflected and diffracted

fields from an object composed solely of flat plates which is

illuminated by an incident plane wave. The accuracy of this theory can

be best evaluated by application of the theory to an actual scattering

problem for which experimental results are available.

The dihedral corner _flector. described in Section 5.1 and

illustrated in Fig. 5-I, is studied using the physical optics theory and

the physical diffraction theory in this chapter. Again the backscatter

cross section in the azimuthal plane as a function of observation angle

is found, just as in Chapter 5, in order that the accuracy of GTD and

PTD can be contrasted.

6.2 Nethod of Analysis

For the analysis of the dihedral corner reflector using the

theories of physical optics and physical diffraction, the best technique

of analysis was found to be the equivalent current method described in

Chapter 4. The PO and PTD fields, being continuous and well behaved,

allow approximations in the calculations of diffraction and reflection

angles and distances, most notably the so-called far-fleld

approximation. In the "far-fleld" approximation, distances are commonly

approximated by the first term of a Taylor series expansion when used as

amplitude variations. When used as the argument of a complex
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exponential in phase calculations, they are approximated by the first

two terms of the Taylor serles expansion, fllmtlarly In the "far-field"

analysis, angles (such as ¢ and ¢0used In the diffraction coefficients)

can be found uslng the approximation that all rays from the target to

the dlstant observation point are parallel. These approximations,

permissible In the physlcal theory, were not allowed in the geometrical

theory near shadow and reflection boundaries since small Inaccuracies in

and % can lead to large variations In the diffracted fields and

discontinuities In the cross section pattern.

When using the theory of physical optlcs, the flrst task In the

analysis of the dihedral corner reflector Is to Identify, for a

particular aspect, the Illuminated and nonilluminated portions of each

plate of the reflector. As Illustrated in Fig. 6-1, the Illuminated

portions are determined using ray tracing methods. In this figure it ls

convenient to consider the direction of an lncldent plane wave to be

fixed, and allow the corner reflector to be rotated. The results, of

course, are Identical to those obtained by leavlng the dlhedral fixed

and rotating the lncident fleld direction. The choice of method Is

purely a matter of convenience.

In Fig. 6-1, only the Illuminated portion of Plate IIls

considered for the single reflected fleld C4, and Plate I is temporarily

lgnored except for the shadowing effect It creates at certain aspects.

In Flg. 6-2, the Illuminated portion of Plate IIls Identified

considering only the double reflected field component C24. In these

figures, the lower row Illustrates different orientations of the

dihedral corner relative to the incident field. In the upper row, the
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projected view of the illuminated plate (Plate II) Is Illustrated with

the shaded regions indicating nonilluminated regions and the nonshaded

regions indicating illuminated reglons. Depending upon the orientation

of the dihedral corner reflector, Plate II may be entirely, partially or

not at all Illuminated by the slng]y and doubly reflected field.

If the methods of analysis presented In [16] are employed, the

theories of physical optics and physical diffraction can be conveniently

utilized to determine the backscattered fields. The surface Integrals

associated wlth physical optics and the llne Integrals associated with

physical diffraction are obtainable In closed form, and they are readily

amenable to computer Implementations.

Most of the geometry relationships necessary for the physical

analysis are identical to those already presented In Chapter 5. The

essential method used In finding the reflection terms begins by

identifying the corners of the Illuminated portion of each plate for

different orientations. It happens that in the azimuthal plane cross

section analysis, these Illuminated portions are always rectangular for

the dihedral corner reflector. It Is not difficult to then integrate

the Induced physical optics current density across the plate since the

current density Is uniform In amplitude and linear In phase across the

plate. For the diffracted fields, the directions of Incidence and

observation can be calculated using exactly the same methods utilized in

the geometrical analysis. Even simpler formulations can be obtained

using the far-fleld approximations wherein all rays from the distant

source to the dihedral are considered parallel. Once the directions of

Incidence and diffraction are known, the diffraction parameters 4, _ ,
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and n are used to determine the equivalent edge currents using (4-10)

and (4-11). The field due to this current is obtainable from the line

integrals of (4-6) and (4-7). These integrals are readily performed

along the straight edges since the current is uniform in amplitude and

linear in phase along the plate.

6.3 Alternate Methods for Double Reflections

The methods presented thus far for determining the physical

optics field are especially convenient for objects composed of flat

surfaces illuminated by an incident plane wave. Allowing initial

reflections in a reflection/diffraction sequence to be analyzed

geometrically using ray techniques maintains the planar nature of the

incident field and subsequently renders the theory applicable to

computer formulations.

The accuracy of this method when compared with experimental

results is reasonably acceptable ,_, the right and obtuse dihedral

corner reflector, but it is not as accurate in the acute angle dihedral

corner reflector case. To improve the accuracy for this case, a more

rigorous analysis technique can be formulated using strictly physical

optics theory for all reflections, particularly for the double reflected

field. The formulation is presented in Appendix B for the vertical

polarization radar cross section of a dihedral corner of arbitrary

interior angle. This more rigorous approach does yield more accurate

results for the acute angle dihedral in the forward region. However it

is much more complex to formulate, and it is probably not tractable for

many of the more complex geometries.

It is interesting to compare the current density which exists on
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the second plate of the acute dihedral corner reflector due to the

double reflection mechanism when elther geonetrlcal optics or physical

optlcs Is used for the first reflection. If geo_etrlcal optics is

utilized for the first reflection, the incident field on the second

plate (Plate II of Fig. 5-1) Is unlform over the illuminated portion of

the second plate and is zero over the remaining nonillumlnated portion.

However, if physical optics is utilized for the first reflection, the

incident field on the second plate Is found from a complicated Integral

expression which exists over both the Illuminated and nonlllu_inated

regions of the plate. The physical optics approxisation say be used to

find the current density on the second plate given the Incident magnetlc

field. Hence the physical optics current density on the second plate

(Plate II) could take one of two distributions; being proportional to

either the incident geometrical optics field or the incident physical

optics field.

_0
The normalized amplitude of the current density Jsz on Plate If,

found using geoeetrical optics theory for the first reflection (on Plate

I), Is Illustrated using contour plotting techniques In Figs. 6-3, 6-5,

and 6-7. The corresponding three-dleenslonal patterns of the normalized

current density amplitude are shown in Pigs. 6-4, 6-6, and 6-8. The

current denslty jeo is normalized to the value of the physical optics
sz

6o where 6o represents the physical optics current densitycurrent Jsz Jsz

whlch would exist in the illuminated portion of Plate II if geometrlca]

optics theory was used for the first reflection. The current density In

these figures has only its magnltude Illustrated across the plate. On

the contour plots a dashed vertical llne has been drawn to indicate the
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Fig. 6-3. Normalized physical optics surface current density on

plate II due to the fields radiated by the physical

optics surface current density on plate I.
(2_ = 77°, ¢ = -lO °, A = B = 5.6088 _, vertical polar-

ization).
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Fig. 6-4. Normalized physical optics surface current density on

plate II due to the fields radiated by the physical

optics surface current density on plate I.

(2_ = 77°, ¢ = -lO °, A = B = 5.6088 l, vertical polar-
ization).
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Fig. 6-5. Normalized physical optics surface current density on

plate II due to the fields radiated by the physical

optics surface current density on plate I.

(2_ = 77°, ¢ = lO°, A = B = 5.6088 _, vertical polar-
ization).
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Fig. 6-6. Normalized physical optics surface current density on
plate II due to the fields radiated by the physical
optics surface current density on plate I.
(2_ : 77 ° , @ : I0 °, A : B : 5.6088 _, vertical polar-
ization).
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Fig. 6-7. Normalized physical optics surface current density on

plate II due to the fields radiated by the physical

optics surface current density on plate I.

(2_ = 77° , ¢ = 20°, A = B = 5.6088 _, vertical polar-
ization).
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optics surface current density on plate I.

(2_ = 77°, ¢ = 20°, A = B = 5.6088 _, vertical polar-

ization).
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boundary between the illuminated and non-illuminated portions of Plate

II which would exist if geometrical optics theory was used for the first

reflection.

Using geometrical optics, the left portion A1 would be

illuminated and would have a uniform physical optics current density

(normalized to unity) while the right portion, A2, would be in shadow

and would have zero physical optics current density. It should be noted

that the boundary of the geometrical optics illuminated portion,

indicated by the dashed vertical line, seems to fall quite near the

0.500 contour line. This indicates that at the boundary the physical

ovtics current density on Plate II due to the physical ovtics reflection

from Plate I is very nearly one-half the current density which would

exist on Plate II if the geometrical theory was used for the reflection

from Plate I. Whereas the geometrical optics theory predicts a sharp

discontinuity in the normalized current density from unity to zero at

this boundary, the physical optics theory predicts a continuous current

distribution crossing this shadow boundary at a normalized current

density amplitude of 0.5.

ro used to produce theseThe expression for the current density Jsz

contour and three-dimensional plots is derived in Appendix B and is

presented by (B-17) as a function of the x, y, and z coordinates of a

surface element on the plate. The current density for the vertically

polarized case is everywhere z-directed on the plates of the dihedral

corner reflector.

6.4 Backscatter Components

The components of the backscattered field from the dihedral
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corner reflector, using the notation of Chapter 5, and using strictly

physical optics theory for the double reflected fields, is illustrated

in Figs. 6-9, 6-10 and 6-11 for the right, obtuse and acute angle

dihedrals. The total radar cross section Is subdivided Into individual

components which are plotted In separate graphs in these figures. The

groups are chosen so as to combine mutually symmetric or reciprocal

components. For these computations the dihedral plate dimensions were A

E B = 5.6088_ and the Incident field was vertically polarized at a

frequency of 9.4 GHz. The radar cross section, as a function of the

dihedral orientation over the first 90 ° on each side of the forward

region is Illustrated. In each figure, the last graph (numbered eight)

gives the total backscatter cross section as the sum of all the

Individual components. These final cross section calculations will be

compared with experimental results In the next chapter.

These figures are Interpreted using the same numbering

conventions constructed for the geometrical analysis of Figs. 5-5

through 5-10. For example, graph 1 Illustrates the cross section of the

combined fields of the two single reflections, C2 and C4, from the two

plates of the dihedral corner reflector. Likewise, graph 2 Illustrates

the combined cross section due to the single diffracted fields from the

outside plate edges C1 and C5.

It was found that not as many backscattered terms were needed in

the PTD analysis, as tn the GTD analysis, to achieve continuity of the

cross section pattern. It Is very interesting to note that while the

corresponding backscatter terms predicted by the physical and

geometrical theories are strikingly different, the total cross section
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found as the sum of all the individual components are remarkably

similar.

Since the backscatter cross section patterns from the physical

theory compared well with experiment using only the terms illustrated in

Figs. 6-9, 6-10 and 6-11, higher order diffractions were not

considered. It is likely that the inclusion of higher order terms would

tend to refine the results to an even closer agreement with experiment.

However, there does seem to be some contention among authors about the

method of application of the physical theory of diffraction when used to

determine double and higher order diffracted fields [26]-[28].



CHAPTER V

COMPARISON WITH EXPERIMENTAL RESULTS

7.1 Configuration

The theories of geometrical optics and geometrical diffraction,

and the theories of physical optics and physical diffraction can be

judged in terms of their accuracy by comparison of analytical and

experimental results.

The specific dihedral corner reflectors, for which limited

experimental results were available, were constructed of two square

p1_t_s _Rch with sides of 5.6088 _. These exuerlmental measurements,

reported in [20], were conducted at 9.4 GHz using vertically polarized

fields (i.e. the electric field vector was parallel to the longitudinal

axis of the dihedral corner reflector). The backscatter cross section,

as a function of azimuthal angle in a plane perpendicular to the

dihedral corner longitudinal axis, was available for reflectors with

90 °, 77 ° and 98 ° interior angles.

The measured radar cross section for the 90 ° dihedral corner

reflector, shown as the solid curve in Fig. 7-1, is characterized by a

large return in the forward region due to a large specular double

reflected field. It is this large cross section, which is relatively

smoothly varying over a wide angular range, that makes the dihedral so

desirable as a radar calibration and testing target [30]-[32]. The 90 °

corner reflector, in addition, has a large cross section at _ = ± 45 °

since a large singly reflected specular field exists whenever the

direction of observation is normal to one of the dihedral corner
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reflector's faces. The measured radar cross section of the 98 ° dihedral

corner reflector, shown by the solid curve In Fig. 7-2, Is characterized

by the same large single reflection lobes near angles at which the

observation direction is normal to a face of the reflector; however the

large double reflected field is noticeably absent. Thls characteristic

decrease In the double reflected field along surface junctions was the

motivation for Knott's work tn RCS reduction [8]. The measured radar

cross section of the 77 ° dihedral corner reflector, shown by the solld

curve in Fig. 7-3, is characterized by a large but rapidly fluctuating

magnitude in the forward region. The two sharp nulls in this region

wo'J!d el_m_n_te this d_hedr_] _s _ ,s_ef,s! t_r_t fnP radar t_t_n_ _nd

calibration, because lost detection by a radar system could be caused

solely by a mlsalignment of the calibration target. Nonetheless, study

of the acute angle dihedral corner reflector is an important test of the

analytical theory, since for this corner reflector, the higher order

reflections and diffractions become important.

7.2 Geometrical Optlcs

The backscatter cross section of the dihedral corner reflector

found using the geometrical optics theory ls compared with experimental

results In Flgs. 7-1, 7-2 and 7-3. The methods discussed In Chapter 5

were used to locate specular points on each surface, If they exlsted,

and for each specular reflection point a source image could be deflned.

The analytical results here were calculated at a distance of 200 _ which

satisfied the far field criterion. The geometrical optlcs cross section

has a very large return over the very small angle where a specular point

due to single reflection exlsts on a dlhedral face. The 90 ° dlhedral
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corner, in addition, has a double reflected field which is very large

over -_/4 < _ < _/4. As discussed In Chapter 5, the cross sections of

flat plates, due to geometrical optics alone, is a function of the

distance of observation and will increase without bound as the distance

of observation Increases. For this reason, if the observation distance

is Increased beyond 200 _, the geometrical optics single reflected cross

section will increase in magnitude, but will decrease in angular extent,

approaching an Infinite cross section over zero angle. The double

reflected field would also Increase without bound in the 90 ° dihedral

case but would exist over the same angular extent of -_/4 < _ < _/4 for

far distances.

From these illustrations It is apparent that the theory of

geometrical optics by Itself is a poor method of finding the radar cross

section of an object composed of flat plates. The theory predicts

infinite cross section whenever a specular point exlsts on a flat plate

of the structure and zero cross section when no such point exists.

Furthermore the cross section Is strongly dependent on the distance from

the target. However, even though geometrical optics is inappropriate

for flat surface structures such as this, it should be noted that

geometrical optics has found useful application in the past for analysis

of bodies which are composed solely of curved surfaces without abrupt

boundaries.

7.3 Geometrical Diffraction

The addition of geometrical diffraction terms to the geometrical

optics terms significantly improves the accuracy of the analytical

results when compared with experiment. The discontinuities in the
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diffraction coefficients of GTD produce discontinuities in the

backscattered field, which remove the discontinuities inherent in the

geometrical optics backscattered fields. And, equally important, the

backscattered fields found using the combination of geometrical optics

and the geometrical diffraction are nearly lnvariant with distance of

observation provided the distance is large in comparison to the target

size. The cross section must be independent of distance for it to be a

useful parameter in the radar range equation of (2-5), since the basic

motivation behind introducing cross sections as target parameters is to

separate the effects of radar distance and configuration from the target

specification.

In Figs. 7-4, 7-5 and 7-6 the radar cross section of the dihedral

corner reflector found using the combination of geometrical optics and

geometrical diffraction is compared with experiment for the 90 ° , 98 ° and

77 ° corner reflector. Again the distance of observation was 200 X for

these comparisons, but the cross section ts relatively independent of

distance, provided the distances are large. Computationally, however,

it is best to choose a distance which is not too much larger than that

given by the far field criterion, because as the distance increases, the

accuracy required in the calculations of _ and % of the diffraction

coefficients increases. Even at 200 X, considerable care must be taken

to avoid any approximations, especially when determining _ and _ .

Seemingly insignificant Inaccuracies in these angles can yield large

errors in the radar cross section near shadow and reflection

boundaries.

The theory of geometrical diffraction, along with geometrical
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optics, performs well at predicting the experimental cross section

pattern. The theory matches many of the major and minor lobes of the

experimental curves quite accurately. It should be remembered that to

achieve this quality of accuracy, especially for the acute angle

dihedral, up to third order reflections and diffractions have been

considered. For the vertically polarized case, for which experimental

results were available, many of the multiple reflection terms from edge

to edge are zero. For the horizontally polarized case more of these

multiple diffractions become important.

7.4 Physical Optics

The theory of physical optics is applied to the dihedral corner

and compared with experiment for the right, obtuse and acute corner in

Figs. 7-7, 7-8 and 7-9. The physical optics terms were found using the

methods of Chapter 6 in which a surface current density is introduced in

proportion to the incident tangential magnetic field. The single

reflected fields are evaluated in terms of this induced surface current

density. The double reflected fields are determined using the method of

Knott [18] in which all double reflected components are determined by

considering geometrical optics (image) reflection at each first

reflection, and physical optics reflection (in terms of the incident

geometrical optics field) at the second reflection. The advantage of

this method is that all the integrations associated with finding the

reflected physical optics fields can be performed in closed form to

avoid costly numerical integrations.

For the obtuse and right angle dihedral corner, the physical

optics analysis approximated in this manner gives good results in most
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regions. The theory is certainly more accurate than geometrical optics

by itself, but It Is not as accurate as the combination of geometrical

optics and geometrical diffraction.

The acute angle dihedral, unfortunately, has significant

inaccuracies in the analytical cross section when compared with

experimental data. The results are acceptable near the single specular

reflection lobes but are inconsistent with experiment elsewhere. This

method of using a combination of geometrical optics and physical optics

for double reflected fields does not appear to yield satisfactory

results for acute angle dihedral corner reflectors which induce strong

multipie reflections.

7.5 Physical Diffraction

The addition of physical diffraction terms to the physical optics

field of the right, obtuse, and acute dihedral corner reflectors Is

compared with experimental results in Figs. 7-10, 7-11, and 7-12. The

physical diffraction fields tend to be smaller than the physical optics

fields, but they glve some improvement to the cross section pattern In

comparison to the experimental results.

The diffraction terms included In the analysis of these cross

section patterns were all those examined in Chapter 4. The diffracted

fields were found using the methods of [16] whereby all diffracted

fields could be obtained In closed form and numerical integrations were

unnecessary. Double and triple reflected fields were included in these

figures and all initial reflections were performed geometrically using

image theory whereas the final reflection was performed physically and

in closed form.
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In Fig. 7-12 it is apparent that even the inclusion of physical

diffraction to the backscatter analysis is insufficient to bring the

analytical results satisfactorily close to experiment for the acute

dihedral corner reflector. The inaccuracy seems to lie in the

approximate method by which the double reflected field was obtained, and

it is this component which can be improved by choosing an alternate

technique.

In order to improve the analytical results for the dihedral

corner reflector, the double reflected field is reevaluated using the

strict physical optics method of Section 6.3 and Appendix B. The

resulting cross section pattern with the inclusion of this superior

reflection computation is illustrated in Figs. 7-13, 7-14 and 7-15. The

only change between these and the previous figures was the reevaluation

of the double-reflected field by the improved technique. The

significant improvement for the 77° dihedral corner reflector cross

section is evident. To achieve this accuracy, the analysis was much

more complex, and it involved a complicated and tlme-consuming numerical

evaluation of a quadruple integral. For more complex geometries the

formulation of a corresponding integration may be an insurmountable

task.

7.6 Comparison of Scattering Theories

The radar cross sections determined using geometrical optics and

geometrical diffraction, and the radar cross sections determined using

physical optics and physical diffraction, can be readily extended for

comparison on the back side of the dihedral so that the full 360°

azimuthal plane may be examined. Although the dihedral corner reflector
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is intended for use in the forward region only, where the double

reflections are dominant, the analysis on the back side allows the

method of GTD and PTD to be evaluated for the exterior corners.

Exterior corners will exist on more complex structures such as ships,

aircraft or other objects.

Although experimental results were not available for the back

regions of the dihedral corner reflector, the geometrical and physical

theories can be compared against each other in Figs. 7-16, 7-17 and 7-18

for the three dihedrals of interest. These figures show that the

geometrical theory and the physical theory are nearly identical for the

expected to provide nearly equivalent results for general scattering

from arbitrary exterior corners.
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CHAPTER 8

CONCLUS I ON

The combination of Geouetrlcal Optlcs (GO) and the Geometrical

Theory of Diffraction (GTD) and the combination of Physical Optics (PO)

and the Physical Theory of Diffraction (PTD) have been used to predict

the radar cross section of a dihedral corner reflector, and the

analytical results were shown to agree quite well with experisental

data.

The geometrical theory and the physlcal theory share certain

advantages over other analytical techniques, such as the No_ent Nethod,

in that both theories provide Insight into the _echanlsms of reflection

and diffraction. They identify specific points or regions on a

conducting body whlch contribute to the total radar cross section at a

particular aspect. In this respect, they can give a better

understand!rig of electromagnetic scattering from conducting surfaces and

edges.

Upon examining the comparison of the theories with the

experimental results for the dihedral corner reflector, the combination

of geometrical optics with the geometrical theory of diffraction and the

combination of physical optics with the physical theory of diffraction

would be expecte d to provide nearly the same degree of accuracy over a

considerable range of aspect angles. The geometrical theory does,

however, seem to have sole advantage in predicting the fine details of

the dihedral cross section pattern especially near the minor lobes of a

given pattern. The physical theory does not predict the minor lobes as

well.
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Considering only the geometrical optlcs and physlcal optlcs

theories, and hence neglecting edge dlffractlon, the geometrical optics

theory alone Is unable to provide a reasonable first order approximation

to the cross section pattern, while the physical optics theory alone may

be satlsfactorlly accurate. In the geometrical theory, the diffraction

mechanisms are mandatory, at least for targets formed of planar

surfaces, to obtain satisfactory results. In the physical theory, the

dlffractlon mechanisms tend to be required only to add refinements to

the cross section pattern.

When applied to targets formed of planar surfaces, the

..... +.(_l +ha_,, nnn+m(nQ mmn_ d(_nnntinlilti_* in the reflection and

diffraction terms which must be carefully considered to ensure

continuity of the total field. Angles and distances used to find

diffraction coefficients must be accurately obtained for an observation

polnt lying In the far fleid. In particular, the conventional

"far-field" approximation cannot be used In all except the least complex

geometries, such as the flat plate. For a planar reflecting surface,

the diffracted fields become infinite as the aspect direction nears the

normal to the flat surface. The sum of the diffracted fields however

will be finite as normal Incidence is approached (as is shown In

Appendix A), provlded that two mutually parallel edges exist which are

perpendicular to the plane of observation. If two mutually parallel

edges do not exist (as In an arbitrary polygonal shape), the shape must

be subdivided into rectangular strips as an approximation. In addltlon,

If two mutually parallel edges do not exist because the vlew of one of

the edges Is obstructed by the presence of another object In the aspect
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llne-of-slght, then an edge diffraction should be Imposed at the

obstruction shadow boundary to ensure continuity In the total field near

normal incidence. When considering third order (or higher)

reflection/dlffraction mechanisms, It has been shown that symmetrically

reciprocal diffraction terms must be Included twice In the total cross

section to achleve a continuous cross section pattern.

When applied to targets formed of planar surfaces, the physical

theory contains few discontinuities and can be used with the

conventional "far field" approximations commonly utilized in

electromagnetic theory. Indeed if the far field approximations are

used, the Incldent field will be a plane wave and the surface and line

integrations associated wlth physical optics and the physical theory of

dlffractlon can be performed In closed form provided the object is

composed solely of flat surface bounded by straight edges. To allow

this closed form integration solution for multiple reflections, only the

last reflection should be performed using physlcal optics lnduced

currents while all preceding reflections should be performed

geometrically in terms of images to preserve the planar nature of the

incident field. Thls approximate method was found to be acceptably

accurate for the obtuse and right dihedral corner reflectors, but was

inadequate for the acute dihedral corner reflector. The solution for

the acute dihedral corner reflector, using strictly physical optics for

all the reflections associated with the double reflected field, is

tractable, but for other more general geometries the solution Is not as

readily obtained. Thls alternate method does provide an Improvement in

accuracy, but It Is not deemed appropriate for a general method for
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analyzing backscattered fields from complex targets formed of flat

surfaces. A comparison of the current distributions on the dihedral

plates, as obtained by these two methods, has been included. When

considering higher order diffractions, several authors have debated on

the method of application of the physical theory of diffraction when

compared with more exact analytical solutions.

The techniques developed to analyze the scattering from a

dihedral corner reflector in the principle azimuthal plane should be

extended to include oblique incidence directions. Some GTD approaches

which might prove successful are using equivalent currents, subdividing

diffraction coefficient, or using Michaeli's genera]Ized diffraction

coefficients. Some PTD approaches which could be utilized include the

equivalent currents method and Mitzner's incremental length diffraction

coefficients.

Other corner reflectors of interest for further study include the

triangular and square corner reflectors, each of which is composed of

three flat plates. Also, in the past years, enthusiasm has developed in

studying objects which are covered wlth dielectric or lossy materials.

These are Just a few of the topics open for study in electromagnetic

scattering and each individual subject will surely open even newer

domains of inquiry.
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APPENDIX A

CONTINUITY OF FLAT SURFACE BACKSCATTER CROSS SECTION

NEAR NORMAL INCIDENCE USING THE GEOHETRICAL

THEORY OF DIFFRACTION

The diffracted fields from a conducting edge become infinite as

one approaches normal incidence to one of the flat surfaces that make

up the edge whenever Keller's diffraction coefficients are employed.

Ross [17] has shown, however, that the total diffracted field by two

edges In a flat plate are continuous, even though each diffraction

individually is discontinuous. In this appendix, the fields are shown

to be continuous for a fiat surface of arbltrary _,_,_.........,=u_=_- ângle ....

then 270 ° , provided the two edges are parallel.

The geometry of interest Is shown in Flg. A-1. Two edges of

arbitrary edge parameters nI and n2 diffract an incident wave from the

direction # = _I = _-_2" The incident field can be written as

E i = Eoe+Jk(xc°s_1+ysin_1) (A-l)

where the polarization is intentionally unspecified and can be either

of the two principle polarizations. A general polarization can always

be decomposed Into components of these two polarizations. The plate

width Is w.

The diffracted field from edge 1, given either soft or hard

polarization of the incident field Is

d El (A-2)E I (s) = (O1 ) Ds h(_Pl,_'a,ns) e-jksl
s,h ,

da Et '_aEs,h(S) = (Qa) Ds,h(_ 2 ,n a)

When using far field techniques

(A-3)
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Et(Q 1) _ Eoe-Jk_c°s_l (A-4)

EJ (Qa) _ EOe+jkwc°s*l (A-S)

e-Jks 1 ~ e-Jk(s+_cos_P 1 )
(A-6)

e-jks a ~ e-J k (s+'_cosq_1 )
(A-7)

The total diffracted field ls

Es,h(S) = Es,h(S)+E h(S) (A-8)

= _En_ _ [D_ h(_P,.,_1,n__)e-jkwc°s_Px
l_4 s J L ....

+Ds,h(_a,_2,na)e+Jkwc°s_l]

where

Ds,h(_,_,n) =

e-Jn/4stn___
n

(A-9)

The difficulties occur when _ = _ (normal incidence) In both

diffraction coefficients. Other discontinuities can occur, for

instance at normal incidence to the second surface bounded by the edge,

but each diffraction discontinuity must be compensated by an opposing

diffraction on the shared surface.

The total field can be expressed as

"= _'E e-Jkq _'-_""1 [,.; "d
Es'h(S) L o j_- j .eg_-- J (A-10)

where the upper slgn Is chosen for soft polarization and the lower sign

Is chosen for hard polarization, and
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_a ffi

I w
---_ sin-_-n--sin-_- 1 .

nl 1 e-jkwcos# + n2 ,_ e+Jkwcos#

cos (--_=)-1 cos (--_=)-1

(a-11)

Z_b=

1 W
Tsin--_- (e-Jkwcos#)

1 1

cos(--_)-cos (_)
1 1

1 TT
--s in--_-= e+jkwcos#

. n2 na( )
cos (---_")-cos (2.-2#)

"z n,

(A-12)

Adding over a common denominator, _b ffi fl/fa where

(A-13)

+ n-_Sin( n-_nz)[cos(--_n2)-cos(Z---#)]ejkwc°s#n1

r.... ,, ..... .#,I r___,., ___,...-.#,I
_.- L_oo,_,-ooo,.=,jLOOO,-_,-ooo,-v,j

Ik tA_

but

fl = fa = 0 at # = n/a.

Therefore

m=_fl 0 and _b is indeterminate at @ _-n
_b = fa 0 2

Using L'Hopltal's Rule for indeterminate ratios,

=0 _w =0
d# I# =n d# I# a

(A-IS)

d_ I _ .
d#" [ #-_ (_j8ka) (.__1 sln__l ) :L n

(A-16)

- -8(Tsin-_- ) _ .
d#'j #'_ , , ('-_ sin-_z )

(A-17)

So that

(A-18)

The result then, for the diffracted fields from a flat surface at
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normal incidence, for the soft or hard polarization is

where

(A-19)

I)a is given by (A-11)

_)b is given by (A-18)

As long as the edge parameters are in the range 2 > n > _- that is the

edge angles are 0°< WA < 270 °, the parameters I)a and _b will be

continuous everywhere and in particular near # ffi_n
2"
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APPENDIX B

QUADRUPLE INTEGRATION TECHNIQUE TO DETERMINE THE

PHYSICAL OPTICS DOUBLE REFLECTED FIELDS

If the theory of physical optlcs is used to determine the double

reflected field from a dihedral corner reflector, a quadruple

integration arises which must be evaluated numerically. Thls procedure

Is more difficult and more costly to implement than the approximate

technique developed by Knott [18] but It ylelds more accurate results

when compared with experiment. This Appendlx derlves the quadruple

integral expression required to find the backscattered flelds for the

vertically polarized case.

The dlhedral geometry is shown In Fig. D-1 where A Is the width

and B is the height of both dihedral plates. The interior angle of the

dihedral ls 2a and the direction of the incidence fleld Is @. Two

normal vectors n s and n t are deflned perpendicular to the reflecting

surfaces. The procedure to find the double reflected fleld components

which reflect first from Plate I and then from Plate II begins by using

the physical optics approximation of the induced currents on Plate I.

The reflected fleld can he found everywhere and In particular on the

surface of Plate II where a surface current denslty ls induced. The

field radiated from Plate II is the desired double reflected field.

For the geometry shown in Fig. B-l, let the lncldent field be

"IE = az"EoeJk(xc°s#+ysin#)

_i = (_yCOS#__xsln #) HoeJk(xcos#+ysln#)

where Eo - _Ho

The unlt normal vectors are

n s - axSlna + ayCOSa

{B-i)

(B-4)
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Incidence x

direc±ion _

Fig. B-I. Double-reflected physical optics field using physical

optics theory for both the first and second reflections.
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nt = axS]_x - ayCOSa

On plate I: y = -xtarcx

On plate II: y = xtana

The Incident field at plate I is

_ll I = (ayCOS# - axsln#) HoeJk(x cos#-x tana sin#)

By the physical optics approxlmatlon

2n s x HJ = 2 x J
S ! ! !

= 2Ho_zSin(¢+_)eJkX(cos¢ - tarKx sln#)

.=d

Then Lhe vecLor puLunLiul Al iu

Ai =-l_ _ ,y' z') dA z4n s(x' , e-JkR '
z R

i dx'dz'where dA =
! COS_

J

As =__ sln(#_x) x• n Ho cosa

eJkX'(COS# - tan= sir_) e-jkR

R
dx'dz'

(s-s)

(B-6)

(B-7)

(B-8)

(B-9)

(B-IO)

(B-z1)

(s-12)

and R_= (x_x,)a+(y+x,tal_)2+(z_ z , )2

The reflected field from plate I is

z " _Az °_Az

Hzs = _Ho sln(#+a) B Acos_
211 C0S¢¢ (x,y,z,x' ,y',z')dx'dz'

where

e-JkR

(B-13)

(s-z4)

ml

Ks(x,y,z,x',y',z')=e jkx'(c°s# - tarzz sin@) X
R
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(R Y x

On Plate II, therefore, the current density is

I " I E _o_I _i_8 !! I I1- 2ns x _ s : 2 _xSi.=- × _, ,,

. cB rAcoscx

=._.o.,-<,+=,// [a _=1
z--_ cosa JO_O xSin=-ay c°

X

m¢

Ki(x,y,z,x',y',z') dx'dz'

A PO
= JSZ

(B-15)

(B-16)

(B-17)

" "ii..... _ --- I"ll'l_ 'i'i,"l I"',,lll','t,,lin"l" tii_nl_ 'i t_,7

Th_ vcccux- potent!__] All .................... " -Slii
i Q

IJ I e- kR''" = -_ Js(X' ,y' ,z' ) dAs
A! ! 4'rl ! i Rt !

(B-18)

where Rt _ r x'cos(a-#)cos= (B-19)

dA ' dx'dz' (B-20)and ! = cos=

The desired double reflected field, found uslng strictly the physical

optics approximation is

"_s = -J_il =

Eo sin(#*=) _z ] x= -J _ COSia
(B-21)

l ]JoJ , Z ' , X" , Z" ) dx"dz'dx ' dz"0 r

where K(x',z',x',z") - [ 2x' s/nail _1 + ,,lk] xR' R'

tkx.COS(=-#)]
_- cost i e-jkR'

e j R'.,COS(=*#)"e cosa
(B-22)

and (R') = = (x'-x') = + (x'+x")itan=a + (z'-z") a (B-23)


