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ABSTRACT

The Geometrical Theory of Diffraction (GTD), which supplements
Geometrical Optics (GO), and the Physical Theory of Diffraction (PTD),
which supplements Physical Optics (PO), are used to predict the
backscatter cross sections of dihedral corner reflectors which have
right, obtuse or acute included angles. These theories allow individual
backscattering mechanisms of the dihedral corner reflectors to be
identified and provide good agreement with experimental results in the
azimuthal plane. The advantages and disadvantages of the geometrical
and physical theories are discussed in terms of their accuracy,
usefulness and complexity. Numerous comparisons of analytical results
with experimental data are presented. While physical optics alone is
more accurate and more useful than geometrical optics alone, the
combination of geometrical optics and geometrical diffraction seems to
outperform physical optics and physical diffraction when compared with
experimental data, especially for acute angle dihedral corner
reflectors.

Some topics which deserve special attention include the
continuity of geometrical diffraction fields from flat surfaces bounded
by parallel edges, the need to avoid far field approximations in GTD
analyses, and two alternative methods for determining double reflected
physical optics fields for which tradeoffs in accuracy and complexity

are encountered.
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CHAPTER 1

INTRODUCTION

In the interest of promoting the advancement of radar technology,
engineers in the past years have endeavored to establish methods to
determine the backscatter characteristics of representative radar
targets. Evaluating the radar echo strength of a particular target, as
a function of the orientation of the target relative to the radar, has
become a topic of major concern because the relative strength of the
echo returned from a target can be related to the maximum distance at
which that target can be detected or observed by a given radar system.

The radar cross section of a target, alternatively referred to as
the backscatter cross section whenever the directions of incidence and
observation are the same, is a quantitative measure of the target's
scattering properties, and relates the given target to a measure of an
equivalent area which would reflect the same power density in a specific
direction given the same incident power density. The radar cross
section is a useful quantity because it identifies scattering properties
of an object independent of the radar system which is to observe that
object and independent of the distance of observation provided the
distance is large in comparison to the target or the radar antenna.

When considering the scattering properties of a conducting
object, the two dominant mechanisms which come into account are
reflections from surfaces and diffraction from edges. Other mechanisms
which may arise in certain target configurations include corner
diffractions and creeping waves. Understanding these mechanisms has

become of great importance in recent years for the development of




methods to reduce radar backscatter from ships, planes, missiles and
spacecraft. The design of these "low-observable" vehicles, which are
fabricated so as to reduce the possibility of radar detection, is often
a complex task. However, in the future, the construction of nearly
every major new military vehicle is expected to incorporate some form of
radar cross section shaping.

Two of the most popular methods for determining approximate
scattered fields due to surface reflection and edge diffraction are the
combination of Geometrical Optics (GO) and the Geometrical Theory of
Diffraction (GTD) [1])-[10], and the combination of Physical Optics (PO)
and the Physical Theory of Diffraction (PTD) [11]-[16]). These theories
have been used extensively, with much success, in many electromagnetic
scattering problems [17]-[24]. The theories are especially useful
because they provide good agreement with experimental results, they
provide insight into specific scattering mechanisms, they involve simple
functions available on most computer systems, and their solutions are
relatively simple to construct in comparison to exact methods. Numerous
comparisons of the GTD and PTD methods have been written by various
authors. Some of the foremost of these comparisons are found in
[24]-[29].

Geometrical optics is a simple approximate method for determining
fields reflected from a surface, given the incident fields. The theory
relies on straight ray travel of electromagnetic waves and simply
requires that each ray satisfy Snell's Law of Reflection at each
reflection point; that is, each ray must be geometrically constructed

such that the angle of incidence equals the angle of reflection. As




3
such the geometrical optics field becomes a function of the curvature of
the incident wavefront and the curvature of the reflecting surface [6],
[7]. The Geometrical Theory of Diffraction (GTD), originated by Keller
[1], and refined by Kouyoumjian and Pathak [2], [3] supplements
geometrical optics by adding contributions due to edge diffraction at
perfectly conducting edges. The Geometrical Theory of Diffraction
introduces diffraction coefficients which are functions of the angles of
incidence and observation, the edge geometry, and the incident wavefront
curvature. The purpose of these diffracted fields is to remove
discontinuities in the reflected fields which are inherent in a
geometrical ray approach. In regions where the geometrical optics field
is zero, the diffraction theory often predicts nonzero fields.

Physical optics is an alternate technique for determining fields
reflected from an illuminated surface. The theory begins by
approximating the current density on any perfectly conducting surface in
terms of the incident field, and from this current density the reflected
fields can be found using conventional radiation integrals of
electromagnetics. Unlike geometrical optics, the theory does not
require the angle of incidence to equal the angle of reflection; hence,
fields are predicted in many directions in which no geometrical optics
field exists. The Physical Theory of Diffraction, originated by
Ufimtsev [11], supplements physical optics to provide corrections to the
scattered field due to diffraction at edges of conducting surfaces.
_Ufimtsev suggested the existence of nonuniform ("fringe") edge currents
in addition to the uniform physical optics surface currents. The

Physical Theory of Diffraction bears some resemblance to the Geometrical
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Theory of Diffraction in the method of application. The theory differs
in that the physical diffracted fields are continuous everywhere since
the physical optics field is generally continuous everywhere. 1In
contrast, the geometrical diffracted fields are discontinuous to
compensate for discontinuities in the geometrical optics field.

When exact solutions are required, field configurations can be
found through electromagnetic boundary value methods. These solutions,
while considered exact, are often difficult to obtain for all but the
simplest geometries. They are often in the form of infinite summations
of complex functions which do not shed insight into specific scattering
mechanisms, and they may require multiple solutions of simultaneous
higher order transcendental equations. Another analytical technique,
known as the Moment Method [25], has found usefulness in a variety of
problems [8] and arises from a numerical solution of electromagnetic
boundary value problems. As a numerical technique, it can be as
accurate as desired by taking smaller increments in numerical
integration algorithms. However, the results do not lend themselves
well to interpretation of the scattering mechanisms. Computationally,
the Moment Method is efficient for objects which are not too large in
comparison to the field wavelength.

In this report, the methods of the geometrical and physical
theories of reflection and diffraction are reviewed, and each is applied
to the dihedral corner reflector. The discussion of the theories
distinguishes the differences in their application and usefulness, and
through the dihedral corner reflector analysis, for which limited

experimental results are available, the accuracy of the theories can be
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evaluated. The dihedral corner reflector was chosen because it exhibits
many of the scattering mechanisms of more complex bodies; namely strong
specular reflections from both singly and doubly reflected fields, and
significant second and third order diffracted fields. The dihedral
corner is analyzed when the interior angle is right, acute, and obtuse
to exemplify the versatility of the theories. All the techniques
mastered in the study of a dihedral corner reflector are applicable to
many other more complex structures.

Basic design equations for the dihedral corner reflector, as well
as other corner reflectors, are presented in {30]-[32] along with
experimental radar cross section patterns. Knott [18] studied the
backscattered fields of the dihedral corner reflector using the physical
optics theory over the first 70° on each side of the forward direction.
Michaeli [24] added physical diffraction in a study of the 90° dihedral
corner reflector near grazing incidence. Yu and Huang [20] analyzed the
dihedral corner reflector using geometrical optics and geometrical
diffraction in the forward region over 180°.

In this report, the geometrical and physical theories are
compared when applied to the dihedral corner reflector over the full
360° of the azimuthal plane. The geometrically and physically scattered
fields are decomposed into individual diffraction components so that
insight into the formulation of the total field may be obtained. The
results of the analytical methods, using the combination of geometrical
optics and geometrical diffraction and the combination of physical
optics and physical diffraction, are compared with limited experimental

data for the right, obtuse, and acute dihedral corners. The cross
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sections using only the reflected fields are illustrated first to depict
the accuracy which can be expected from using geometrical optics or
physical optics alone. The refinements of the corresponding diffraction
theories are then included to improve the comparison with the
experimental results. The accuracy and utility of the two theories can

then be compared.




CHAPTER 2

RADAR CROSS SECTION

2.1 Introduction

All objects reflect and diffract electromagnetic waves which
impinge upon them. The radar cross section (RCS) is a figure-of-merit
which is used to characterize the scattering properties of the object.
Objects which scatter a large proportion of the incident power density
in a specified direction are said to have a large radar cross section,
while objects which direct only a small proportion of the incident power
density in a specified direction are said to have a small radar cross
section. The radar cross section of an object has dimensions of area.
It can be said to be an area which encloses an amount of power from the
incident electromagnetic wave, such that if this power were scattered
isotropically it would produce the same power density in the scattered
direction as the actual object.

As such, the radar cross section is not indicative of the
physical size of an object, and it can vary over many orders of
magnitude for objects of approximately the same size or even for the
same object viewed from different directions. The spherical conductor
is the only object whose backscatter radar cross section is independent
of aspect. The sphere's cross section is nearly equal to its physical
cross section, Tb? (where b is the sphere radius) provided that the
radius is much larger than the field wavelength, and the incidence
direction and scattering direction are identical [32].

The term "radar target" is a conventional name for any object




which the radar system is to observe. The term originated from the
important military applications of radar systems, and it is now
routinely used in many nonmilitary applications including tracking
commercial aircraft and spacecraft, enforcement of speeding laws,

mapping ground terrain, or even monitoring insect migration [33].

2.2 Definition
For three-dimensional targets intercepting spherical waves, the
formal definition of radar cross section is given by

o pin [ ]

(2-1)
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(. = the radar cross section

R = the distance of observation from the
target

wl, wS = the incident and scattered power
densities, respectively.

the incident and scattered electric
fields, respectively.
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the incident and scattered magnetic
fields, respectively.
The incident and the scattered fields are measured, respectively, at the
target and observation locations.
The radar cross section, g, defined in this manner is
proportional to a ratio of power densities and is independent of phase.

The radar cross section is defined for specific incidence and scattering




directions. If the directions of incidence and scattering are
identical, o is designated as a monostatic cross section; otherwise it
is referred to as a bistatic cross section. The monostatic radar cross
section is also commonly called the backscatter cross section.

The cross section definition does not explicitly consider
polarization losses. To remedy this situation, any of the field
quantities Ei, Es. Ei, and is can be taken as the total field or as just
a component of the total field. If the incident and scattered
components are mutually parallel or mutually perpendicular, o is
referred to as the primary or cross-polarized radar cross section
respectively.

The topic of two-dimensional cross section is important in some
analytical approaches. Also known as the radar cross section per unit
length, the two-dimensional cross section is defined for two-dimensional

objects as [17]

Es 2 is 2
o; = 1im [ 2np |E|" ] = 1im [2mp |E|'] (2-2)
oo El proo Bi
where
63 = the radar cross section per unit length
P = the radial distance in cylindrical
coordinates
E*, E°, H', H = the incident and scattered fields

For this definition, it is assumed that the object is z-independent
(i.e. the longitudinal axis lies parallel to the z-axis). If an object

is of finite length but is z-independent along this length, then the




10
three~-dimensional radar cross section of the truncated object can be
related to the two-dimensional radar cross section per unit length of

the corresponding z-independent object by [17], [19], [34]

s - 812 (2-3)

where

the three-dimensional radar cross section
of the truncated two-dimensional object

Q
n

63 = the radar cross section per unit length of
the two-dimensional object

)
]

the finite length of the truncated object

>
]

the free space wavelength

This transformation equation is useful for simplifying certain analyses
[17], [19]. The truncation of a two-dimensional shape is illustrated in
Fig. 2-1.

Although the three-dimensional radar cross section has dimensions
of area, it is commonly measured and reported using a decibel scale
relative to an area of one square meter, with units "decibels above one
square meter"” or dBsm. Since the cross section is directly proportional

to a power ratio, the equation of conversion is

6 (dBsm) = 10 log [ o (n?) ] (2-4)

where

6 (dBsm) = the radar cross section in decibels above
one square meter

(] (ma) = the radar cross section in square meters




1

Infinite length
two-dimensional ob ject

.............
. ...

Truncated
two-dimensional ob ject

Fig. 2-1. Truncated two-dimensional object geometry.
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On a complex target, the backscattered fields from different
scattering centers can constructively or destructively interfere
producing large fluctuations in the radar cross section if the object
rotates. It is not uncommon for the radar cross section of a complex
target to vary over several orders of magnitude, or tens of dB, for just

a few degrees of rotation.

2.3 Applications

The most important application in which the quantity,o0 , arises

is in the radar range equation [8]

2
P, _s Gy, 602 [ A ] (2-5)

¢ an 4n R, R,

for the bistatic case of Fig. 2-2 where

¢ = the radar cross section
Pt' Pr = the power of the transmitted and received
signals, respectively
Gy1+ Gp2 = the gain of the transmitting and receiving

antennas

R1 = the distance from the object to the
transmitter

Rz = the distance from the object to the

receiver

The equation as given here does not consider losses, antenna mismatch,
and polarization mismatch. 1In addition, the distances R, and R, must be

in the radar's far field.

For the monostatic case (R1 =R, =R, G,, = Gy, = G), (2-5)
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reduces to

1
[ P, G2 226 ] .
R=| &+—

(2-6)
(4m)® P.

If Pr is taken as the minimum detectable radar signal, then R becomes
the maximum distance for radar detection. The equation in this form
explicitly illustrates the necessity for determining the radar cross
section of a given radar target in order that the maximum distance for
detection of that target may be determined. Indeed, the cross section
over a wide range of aspect angles should be known, because in many
practical situations the orientation of the radar target relative to the
radar is unknown. For this reason, developing experimental and
analytical methods of determining radar cross section has always been of
great importance in radar technology for predicting target detection,
recognition, or imaging capabilities.

Under certain circumstances, it may be important to develop
techniques whereby radar cross sections of various objects might be
reduced or enhanced under some type of optimizing criteria. Analytic
studies of scattering mechanisms are invaluable toward discovering these
techniques. Furthermore, the advancement of radar technologies, such as
target imaging and recognition, benefits from a clear understanding of
the scattering mechanisms involved in reflection and diffracting from
complex targets. For these reasons the analytical methods of the
Geometrical Theory of Diffraction and the Physical Theory of Diffraction

are deemed to be important, because they provide insight to the
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mechanisms and components which produce certain characteristics of the
radar cross section for a particular target. For the shapes which can
be studied analytically using available techniques, experimental
measurements of backscattered fields would always be possible. However
experimental methods often do not indicate where and through what
mechanism the scattering takes place. In an experiment, conclusions can
be drawn only after many repetitions of the experiment have been
performed and systematic manipulations of the target parameters are
recorded alongside the pertinent experimental data. The analytical
theories are very desirable because they avoid the need for experimental
tests which can be expensive and time-consuming. In this respect, the
geometrical and physical theories of diffraction can be useful for

parametric and design studies.




CHAPTER 3

GEOMETRICAL THEORY OF REFLECTION AND DIFFRACTION

3.1 Introduction

The combination of Geometrical Optics (GO) and the Geometrical
Theory of Diffraction (GTD) provides a powerful analytic tool for
determining high-frequency solutions to electromagnetic field problems
which in many cases would be too difficult to solve, or would be
impossible to solve by exact boundary-value methods. The geometrical
theories allow more simple approximate expressions for field
distributions to be obtained, and in addition, the expressions are in
such a form that a more clear understanding of the inner mechanisms of
reflection and diffraction can be grasped. The exact boundary—value

solutions, if they can be found at all, often are in the form of

jnfinite summations of complex functions and, for many problems, provide

insufficient understanding of the origins of the field configurations.
In contrast, geometrical optics and the geometrical theory of
diffraction identify specific radiating points on each component of a
complex structure which are said to contribute to the total field
distribution. As such the geometrical theories can provide intuition

from which both inductive and deductive conclusions can be drawn.

3.2 Geometrical Optics

The theory of geometrical optics, as the name implies, was
employed first for optical rays, and it was later employed at lower
electromagnetic frequencies when interacting objects were much larger

then the electromagnetic wavelength. In geometrical optics,
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electromagnetic fields are assumed to propagate in narrow tubes of rays
along straight line paths in homogeneous media. The phase of the
electromagnetic wavefront is directly proportional to the distance
traveled, and the constant of proportionality is the phase constant k.
In lossless media, the field strength of the electromagnetic wave can be
determined by requiring that power must be conserved along any narrow
tube of rays and therefore the power density associated with a wave is
inversely proportional to the tube's cross section.

The interaction of tubes of rays with discontinuities in media
are found from extensions of Snell's Law of Reflection and Snell's Law
of Refraction. A geometrical reflection, with its associated image, is
illustrated in Fig. 3-1. Snell's laws are obtained from an examination
of the interaction of a plane wave with a plane boundary between two
media, and they stipulate requirements on the angles of reflection and
refraction given the angle of incidence of a plane wave. The
geometrical theory extends these results by considering an interacting
object to be locally plane if its radii of curvature in two orthogonal
planes are large. In this manner, Snell's law's can be applied,
granting a certain amount of approximation, in many diverse situations.

Geometrical optics, by itself, however, has certain disadvantages
when applied to some problems. First the theory predicts that the field
will be nonzero only if a ray path can be constructed from the source to
the observation point such that this path satisfies Snell's laws at each
reflection and refraction. A point at which the field is identically
zero, because no such paths exist, is said to be in a shadow region.

Similarly the theory predicts that the field at a point will be infinite
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if an infinite number of ray paths can be extended from the source to
the point; such a point is said to be at a caustic of the geometrical
optics field. These characteristics are disadvantages of geometrical
optics because, through experimental techniques and through other
analytical methods, it has been verified that fields do exist in shadow
regions of the geometrical optics field, discontinuities in the field do
not exist as an observation point passes from an illuminated region to a
shadow region, and infinite fields do not exist at caustics of the
geometrical optics field.

A comprehensive overview of the techniques of geometrical optics
has been prepared by Deschamps [6] and describes the origins of the
theory as well as its validity in comparison to more complex methods
based on rigorous interpretation of Maxwell's equations. The details of
geometrical optics reflection from conducting plates have been worked
out by Lee [7]. The theory is very well defined and has been refined
over many years to include most of the dominant features of
electromagnetic waves; namely, intensity and phase variations,
polarizations, wavefront curvatures, reflections, refractions, caustics,
and interference phenomena in homogeneous or inhomogeneous media.
Deschamps [6] offers an interesting analogy between the relationship of
ray optics and wave optics to the relationship of classical mechanics
and quantum mechanics because of the nature of the problems which can be

solved by each.

3.3 Geometrical Theory of Diffraction
The Geometrical Theory of Diffraction, originated by Keller [1],

is an extension to geometrical optics to remove shadow regions of the
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geometrical optics field by introducing diffraction mechanisms by which
a ray can be scattered when incident on an edge of a conducting object.
By the addition of these diffracted fields, rays are allowed into
regions which might otherwise have been in shadow. 1In addition, the
diffracted fields also modify the total field strength in regions which
are illuminated by the reflected and refracted fields. The
disadvantages of Keller's diffraction theory is that the diffracted
fields become infinite at the boundaries of shadow regions, and are
inaccurately large near the shadow boundary.

Kouyoumjian and Pathak [2], [3] brought significant improvement
to Keller's diffraction theory by a more exact evaluation of the
diffraction coefficients which simultaneously removed the singularities
in Keller's coefficients near the shadow boundaries and guaranteed
continuity of the field when crossing a shadow boundary. By the methods
of [2] and [3], the Geometrical Theory of Diffraction can be applied to
edges or curved surfaces on conducting bodies. The improvement of the
diffraction coefficients established the geometrical theory of
diffraction as a powerful tool in electromagnetic analysis. Commonly,
Kouyoumjian and Pathak's diffraction theory is called the Uniform Theory
of Diffraction (UTD). In this document, when reference is made to the
Geometrical Theory of Diffraction (GTD), it is understood that the
improved diffraction coefficients are utilized. In addition, only the
term GTD (or UTD) may be used to identify the combination of geometrical
optics and geometrical diffraction since the geometrical optics field
can be shown to be the leading term of a Luneberg-Kline series from

which the diffraction terms are extracted.
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3.3.1 Normal and Oblique Incidence

A general edge geometry is illustrated in Fig. 3-2. The edge is
the vertex of the angle formed by two perfectly conducting flat
surfaces. The included angle between the two surfaces is referred to as
the wedge angle WA. Using the ray techniques of geometrical optics the
surface would be expected to cast a shadow in the region not directly
visible to the source, and in this region the geometrical optics field
would be identically zero. The incident shadow boundary line in Fig.
3-2 marks the extent of this shadow region. An abrupt discontinuity in
the geometrical optics field exists across this boundary.

Since the surfaces are perfectly conducting, they also cause a
reflected geometrical optics field to exist in regions where Snell's Law
of Reflection can be satisfied. In regions where no point of reflection
can be located, no reflected field will exist. The reflected shadow
boundary line in Fig. 3-2 defines the extent of the region in which a
reflected field may exist. Another abrupt discontinuity in the
geometrical optics field is created along this boundary.

To remove the discontinuities in the geometrical optics field,
the edge is said to diffract an incident field into all space
surrounding the wedge. The diffracted field is added to the geometrical
optics field to assure continuity across the incident and reflected
shadow boundaries. In this way, the diffracted field refines the
geometrical optics field to bring the approximate analytical solution
closer to the exact boundary value solution in all space.

The diffraction phenomenon is not limited to two-dimensional
geometries, and it can be illustrated for a general three-dimensional

wedge shown in Fig. 3-3. Figure 3-2 can be considered to be the
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projection of Fig. 3-3 into the plane perpendicular to the edge at the
diffraction point Q. In the theory, the diffracted ray is said to lie on
a cone generated as the locus of all directions from the diffraction
point such that the angle subtended by the incident ray and the edge is
equal to the angle subtended by the diffracted ray and the edge. This
cone has conventionally been termed the Keller cone, and it is not
merely a theoretical contrivance but has been shown to exist
experimentally [35]. For any given source and observation point, the
diffraction is normally limited to one point (or at most a finite number
of points) on the edge, unless the observation point happens to be at a
caustic of the diffracted field. If no point can be located at which
the Keller cone criterion can be satisfied, no diffracted ray can exist
unless the method of equivalent currents, as described in Section 3.3.2,

is utilized.

To determine the field diffracted from an arbitrarily oriented

edge, an edge fixed coordinate system is constructed, as shown in Fig.

3-3 such that e, is a unit vector along the edge, ey is a unit vector

perpendicular to e, and lying in one face of the edge, and ; =ezx;x. A

Zz y

diffraction point Q is then located on the edge such that if ;' is a

unit vector from the source to the diffraction point and ; is a unit
vector from the diffraction point to the observation point, then the
condition
;' ° ;z = ; ° ;z = cos po (3-1)
holds so as to guarantee that the diffracted ray subtends an angle from
the edge identical to the angle subtended by the incident ray and the
edge. This ensures that the diffracted ray lies on the Keller cone.
Relative to the diffraction point, coordinate vectors associated

with the incident and diffracted rays are defined by
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Fig. 3-3. Geometrical diffraction at oblique incidence.
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- s X e - e_Xs'
- - -z *o - ‘z -
]
= x e, | |ez xs| (3-2)
o - - - -
B s X ¥ po = g' X wo

These coordinate vectors compose a ray-fixed coordinate system which

reduces the complexity of the diffraction formulation. The incident

[}
field at the point of diffraction, Ei(Q). is decomposed into two

components which are parallel to the ?0 and éo directions, respectively,

-

By © E;(Q) (3-3)

i

-~

¥, ° E;(Q) (3-4)

sz(Q)
The diffracted field due to the diffraction from the edge, as a
function of distance from the diffraction point, is given by [8]
d i
Eg(s) i D, © Ego(Q) aoost) eIk (o)
E(s) | %™ | o p, E*i‘Q’

and the total diffracted field, as a function of the distance s from
the diffraction point Q is

-l L] -~ -l -~
Els) =E0s) 8 + BIs) ¥ (3-6)
The factor A(s,s') is known as the spatial attenuation factor and
is given by
-
/5 for plane and cylindrical
A(s,s') = wave incidence (3-7)

/ __s' for spherical wave incidence
s(s+s')

The factor L, known as the distance parameter, is defined as
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s sinzp0 for plane and cylindrical
L = wave indidence (3-8)

' i
s s' SIN"B,  for gpherical wave incidence

s + 8'
According to the geometry of Fig. 3-3, s' is the distance from
the source to the diffraction point, and s is the distance from the
diffraction to the observation point.

The diagonal matrix elements, Ds and Dh' are referred to,

respectively, as the soft and hard polarization diffraction

coefficients. In general, Ds and Dh are function of the distance
parameter L, the incident and diffracted angle ¥ and *o’ and the edge
wedge parameter n

n=2--— (3-9)

where WA is the interior wedge angle as shown in Fig. 3-2.

The diffraction coefficients Ds and Dh are given as

D

i r
DS(L.W.?O.D) D (L.?-Wo,n) - D (L.*+Wo.n) (3-10)

D, = Dp(L.#.%,.n) = D (L= .n) + D" (L ¥+, .n) (3-11)

Di and D¥ are referred to as the incident and reflected diffraction
coefficients and are given by [8]

=TT
—e Ji

D! (L,¥-#,.n) = x (3-12)

2n/znk

{ c"ev,.m) Flkig® (+-4,)] + €744 m) Flkeg™(+-+,)] }

N

_e~d
2n/znk

{ ot (werg.m) B[kig" (rowy)] + OT(vewgum) Flkig (e, }

DU(L,¥+¥ ,n) = x (3-13)

The C and F functions are defined as
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+ -"+(W1Wo)’
C”(¥t¥,.n) = cot|—— (3-14)
L 2n i
- -ﬂ—(?i?o)'
C (‘f’i"‘o.n) = ¢cot|———=— (3_15)
| 2n i
Flkie” (v, )] = 23/ kLe® (v2v ) eJKLE" (¥H¥) o
3-16
eI ar ( )

Jhig® (v2y,)

F[kLg‘(wiwo)] = 23/kig (vxe ) IKIE (HI¥,)

3-17
-sz ar ( )

where

g+(*iWo) =1 + cos[ ('Pi‘PO)-ZnnN+ ] (3-18)

g (ri¥) = 1+ cos| (i, )-2nnk” | (3-19)
N* and N~ are the integers which most nearly satisfy

2nmNt - (Wi?o) = +q for g_(?i?o) (3-20)

2nnN” - (i) = -m for g*(wiwo) (3-21)

The F function involves a Fresnel integral and can be computed
efficiently using a numerical algorithm given in [36]. A FORTRAN
computer subroutine which uses this algorithm to calculate the

diffraction coefficients Dg and D; can be found in [8] or in [37].

In radar cross section analysis, where the source and observation
point recede to infinity, the distance parameter L increases to

infinity. The argument of the F functions then becomes large
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everywhere except at the single points where g'(?two) or g+(?i¢o) equals

Zero.

With the exception of these points, which happen to be along the

incident and reflected shadow boundaries, the F functions can be shown

to approach unity, and the diffraction coefficients reduce to those

originally proposed by Keller where [8]

n
Py sin[!-']
D, = ——LN

s n/znk

e—jg sin['ﬁ']

Dh=
n/znk

1

1

-

cos(g) - cos(iﬁro)

[ 1

m
cos(n) cos

1

(drto,

Lcos(g) - cos(igfo)

+

cos(%) - cos

b
ko))

(3-22)

(3-23)

The terms in these expressions become infinite as a shadow boundary is

approached.

At the shadow boundaries, ¢+W° or W*Wo equals n, and hence

one of the denominators in the expressions for Ds and Dh will be zero.

The diffraction coefficients contain certain symmetries due to the

cylindrical symmetry of the wedge geometry of Fig. 3-3, and due to

reciprocity.

doefficients D8 and Dh satisfy

Ds,h(L.*P.‘Po.n) = Ds,h(L.nn-%nn-*Po.n)

To satisfy the wedge symmetry, the diffraction

(3-24)

and to guarantee reciprocity, the diffraction coefficients satisfy
Ds'h(L-‘P.‘Po»n) = Ds,h(L"PO p?on)

(3-25)

These identities can be used to advantage in certain configurations.

3.3.2 Equivalent Current Method

The method of equivalent currents is introduced to the theory

geometrical diffraction to predict field distributions when no

diffraction points exist, or to predict fields at caustics when an
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infinite number of diffraction points exist. It is quite simple to
envision object geometries for which there are no diffraction or
reflection points but for which the scattered field is experimentally
nonzero. For these geometries, the method of equivalent currents can be
used to determine the total field. Many of the early papers credit a
series of three monographs by Millar as the basis for the equivalent
current method [38]-[40].

The equivalent current method has been used by Ryan and Peters
[4]. by Knott and Senior [5], [27] and by Sikta, et al. [21], [23].
This technique defines an edge current on the diffracting wedge which
produces a field on the diffraction cone identical to the field
predicted by the diffracted ray. The equivalent current obtained can
then be used to find the fields diffracted in directions away from the
diffraction cone or in directions of caustics. These currents are
nonphysical in the sense that they depend not only on the incident field
direction but also on the observation direction.

The equivalent edge currents can be either electric or magnetic
in nature, and they are determined in terms of the components of the
incident electric and magnetic fields which are parallel to the edge

vertex. The equivalent currents are expressed as

3% g -
1€ - St Ep(Q) Dg (L.¥.%y.0) (3-26)
-5z
1 - DATE St #i(Q) Dy (L.¥.¥,.0) (3-27)

where
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Ei. H; = the incident electric and magnetic fields
parallel to the edge at the point of
diffraction

Dg. D, = the diffraction coefficients of (3-10) and (3-11)

From the equivalent currents, the magnetic vector potential Z and
the electric vector potentia1'§ can be found by integrating the
contributions of infinitesimal current elements. From the vector
potentials, the diffracted electric and magnetic fields may then be
obtained. The equations which are used in this procedure are presented
in Chapter 4 as they form an essential part of the Physical Theory of
Diffraction. The diffracted fields from the equivalent current method
are found in all space although diminishing accuracy should be expected

as the observation point moves away from the Keller cone.

3.4 Application to Backscatter Analysis

The theory of geometrical optics can satisfactorily predict the
fields backscattered from conducting objects provided that a specular
reflection point exists on the object, the specular point is not near to
an abrupt discontinuity such as an edge, and the object is doubly curved
at the specular point [25]. The radar cross section under these
conditions is

c = maa, (3-28)
where
6 = the radar cross section

a . a, = the principle radii of curvature of the
body at the specular point.

From this formula it is evident that if the body is singly curved (i.e.
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a cylindrical structure) or the body is planar (i.e. a flat plate) then
one or both radii will be infinite. The radar cross section is then
infinite for single curved or planar structures provided a specular
point exists. However if no specular point exists on the conducting
surface, then the cross section is identically zero.

The diffraction coefficients of the geometrical theory can become
less convenient to use when applied to radar cross section analysis.
The diffraction coefficients of (3-10) and (3-11) revert to the original
forms proposed by Keller, as given in (3-22) and (3-23), as the distance
parameter for the single diffracted fields becomes unbounded.
Unfortunately these diffraction coefficients are plagued by
discontinuities near incident and reflection shadow boundaries. For
backscattering from a straight edge joining two planar surfaces, the
diffraction shadow boundary occurs at an aspect normal to either planar
surface.

Considering the reflected and diffracted field from a flat
surface bounded by straight edges, it is evident that at normal

incidence the backscatter cross section due to geometrical optics and

- the backscatter cross section due to geometrical diffraction from an

edge are both infinite. Fortunately, however, it is possible to use the
theory in certain cases if the cross section is found at some finite,
yvet large, distance from the object (rather than at an infinite
distance). As the finite distance increases, the cross section will
approach some finite value for all aspects. A rule which can be used
for choosing the minimum distance of observation is given by the

"far-field" criterion [8]



32

R

min = 2 D®/ A (3-29)

where
Rain = the minimum distance
D = the maximum dimension of the target
A = the free space wavelength

Ross [17] showed that for the rectangular flat plate the
diffraction coefficients for each edge were infinite near normal
incidence but the singularities from each edge cancelled against each
other to yield finite cross sections at all aspects for the singly
diffracted field. This occured because the edges are mutually parallel
and the edge parameters n are identical. Sikta {21], [23] used this
property in his analysis of a general polygonal plate by subdividing
each polygon into a number of rectangular strips to ensure continuity of
the diffracted field near normal incidence. It is shown in Appendix A
that the diffracted field singularities will mutually cancel regardless
of the edge wedge angles provided the edges are mutually parallel. This
is an important result because it allows the subdivision of a general
geometry into rectangular strips so that the theory is not limited
solely to flat plates.

The geometrical theory works well for the analysis of truncated
two-dimensional objects as described in Section 2.2 whenever the objects
are formed of flat surfaces bounded by straight edges. If a target is a
more general three-dimensional object, three other methods may be
considered for the analysis. One method would be to subdivide a general
three-dimensional target into rectangular segments following Sikta [21],

[23], and incorporating the equivalent current method. A second method
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utilizes the corner diffraction coefficients empirically proposed by
Burnside and Pathak [21], [22], [23]. The semi-heuristic corner
diffraction.coefficient was used by Sikta in the analysis of polygonal
flat plates, and it is applicable to corners formed by the intersection
of a pair of finite straight edges (as on a polygonal flat plate). This
is one type of corner which is commonly found on more complex structures
such as the dihedral corner reflector. A third method utilizes the
generalized equivalent edge current theory presented by Michaeli [9],
{10], [25], [29]). The equivalent edge currents presented by Michaeli
can be used to determine the diffracted fields from an edge given
arbitrary directions of illumination and observation. The expressions,
however, are fraught with singularities, much like Keller's diffraction
coefficients. Perhaps cancellations in these singularities can be found

to allow appropriate solutions to be obtained for certain geometries.




CHAPTER 4

PHYSICAL THEORY OF REFLECTION AND DIFFRACTION

4.1 Introduction

The combination of Physical Optics (PO) and the Physical Theory
of Diffraction (PTD) can be used to provide approximate expressions for
the fields scattered by a conducting object. The theory evolves from an
approximation of the current densities on reflecting surfaces and the
edge currents on diffracting edges, from which the scattered fields can
be computed.

The methods of physical optics and physical diffraction provide
an alternative to the more difficult solution of the boundary value
problem associated with a given scattering geometry. These methods
share many of the advantages of the geometrical theory in that the
solutions can be solved in terms of elementary functions, and the
results provide a clear understanding of which reflection and
diffraction mechanisms are most important for a given angle of
observation. Unlike the geometrical theory, however, the physical
theory includes an intermediate step when finding the scattered fields;
namely, the currents on surfaces and edges must be determined in terms
of the incident fields. From these induced currents, the scattered
fields can be computed through conventional methods utilizing the
radiation integrals of electromagnetics. The geometrical theory, in
contrast, determines the scattered fields directly in terms of the
incident fields and circumvents the need to perform tedious or costly

integrations (an exception being the method of equivalent currents of
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Section 3.3.2).

The physical optics theory, unlike geometrical optics, can
predict fields in directions which do not satisfy Snell's Law of
Reflection and thereby avoids the discontinuities in fields associated
with geometrical reflection and shadow boundaries. Knott [25] discusses
the usefulness of the physical optics theory and asserts that the theory
is acceptably accurate for flat and singly curved surfaces. Harrington
{15] provides an explanation of the method of physical optics in the

context of electromagnetic integral equations.

4.2 Physical Optics

The theory of physical optics stems from a study of the
reflection of a plane wave from a perfectly conducting plane which is
infinite in extent. The current density on a flat conducting surface

which is infinite in extent is given by

[
J.=nXx Ht (4-1)
where
-l
Js = the surface current density

i = the total magnetic field on the surface of
t the plate

; = a unit normal to the plate

For an incident plane wave, the total tangential magnetic field is twice

the incident tangential magnetic field so that [15]

- -
Jg = 2n X H (4-2)

where
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ﬁi = the incident magnetic field of the surface
of the plate
Equation (4-2) is used as an approximate solution for the current
density on any perfectly conducting locally smooth surface which has
finite dimensions. It is commonly referred to as the "physical optics
approximation". For a general conducting object the incident field is
taken to be the ray optic incident field from the source, and the
current is said to exist only in the illuminated portions of the
conducting object where the direct source rays or reflected source rays
impinge upoﬁ the object. In this manner the theory of physical optics
uses the idea of straight line ray paths from geometrical optics for
determining illuminated regions of an arbitrary surface. If the
geometrical optics incident field in a region of the object is
identically zero because no incident rays exist from the source to the
region, then the physical optics current in this region is identically
zero.
Once the surface currents over a conducting object are determined
via the physical optics approximation, the reflected field due to the
surface current density can be determined by first finding the magnetic

-t
vector potential Asby [8]

-t - -ij
= M [ ! -
Ag P I Is.Js R ds (4-3)
where
-
As = the magnetic vector potential
p = the permeability of free space
R = the distance from an infinitesimal surface
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current element to the point of
observation

The surface integration is performed only over the illuminated portion
of the conducting surface. The field due to the potential can be found

by [8]

Eg = ~JuAg - I 5z ¥V (VY © Ag) (4-4)

which reduces, in the far field to

- .-
ES = "J(JAS

(4-5)

where

the reflected electric fields

tm
wn
"

€
]

the source radial frequency

=
n

the permeability of the medium

€ = the permittivity of the medium.
Although the radial component of the field is typically nonzero, it is
taken to be zero in the far field because its value is much smaller than
the © or ¢ components.

An issue of concern in physical optics analysis is the method of
determining the fields due to double reflection; that is, fields which
reflect from one conducting surface, are incident upon and reflect from
a second conducting surface, and are subsequently received at the point
of observation. The method of determining these double reflected fields

can take the following two forms:

a. The first and second reflection can be performed using
physical optics integrations over the illuminated portion

of the reflecting surfaces.
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b. The first reflection can be performed using simple

geometrical optics ideas and the second reflection can be

performed using a physical optics integration over the

illuminated portion of the second surface.
The first of these methods is generally the more complex, involving
muitiple integrations and differentiations over what may be complex
geometries; however, it often gives superior results. The second
method, used previously by Knott [18], can greatly reduce the complexity
of the field calculations for certain configurations. This second
method is justified by the argument that the physical optics currents
are conventionally found in terms of the incident geometrical optics
fields, and the incident field could come from a source or from the

image of a source.

4.3 Physical Theory of Diffraction
The Physical Theory of Diffraction, formulated by Ufimtsev
[11]-[13], supplements the physical optics theory by adding
contributions due to diffractions at the edges of conducting surfaces.
These diffracted fields serve to refine the physical optics fields to
account for edge effects which are not considered in the physical optics
approximation. The diffraction coefficients are incorporated to include
the nonuniform fringe currents which exist near the edges of a
conducting object, in addition to the uniform physical optics currents.
The diffracted field can be determined in one of two ways in a
. manner very much analogous to the method of geometrical diffraction. 1In
one method, the diffracted fields are found directly in proportion to

the incident field and a diffraction coefficient. In the second method,
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an intermediate step of finding equivalent edge currents is introduced,
from which the edge diffracted fields can be found using a line
integration of differential current elements. This second method is
extremely useful for complex three-dimensional objects and is chosen as
the focus of the physical diffraction formulation here because it allows
fields to be calculated off the specular scattering direction. It is
worth noting that a third method by Mitzner [14], [25], [29] develops an
incremental length diffraction coefficient (ILDC) which allows fields
off the specular direction to be determined. Knott [25] maintains that
the ILDC formulation is essentially a description of equivalent
currents.

For the general case, the equivalent currents considered in the
physical theory of diffraction must be both equivalent magnetic
currents, Ie. and equivalent electric currents, Rn' The diffracted
electric field can then be determined from the magnetic vector potential

A and the electric vector potential F. The potentials are [8]

- -JkR
A = B 1 & dl (4-6)
4 J e R
-jkR
T .=._€._j 1 & d1
and the scattered electric field is
-t -t 1 - 1 -l; (4‘8)
E‘—JQA“jw—’leV(V°A)—EVX

In the far field, the 6 and ¢ components are given by

E =z —JoA + Jun ;r x F (4-9)
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Although the radial component is nonzero, it is taken to be zero since
it is much smaller than the 6 or ¢ components. The line integrations of
(4-6) and (4-7) are performed only over the illuminated portion of the
diffracting edge.
1f the edge is taken to be parallel to the z axis, as shown in

Fig. 4-2, the equivalent currents are given in [16] as

e 2 i
15 - & fE (4-10)
m_ ;2 i
Iz ot Bl (4-11)

where

z' 'z = z-components of the equivalent electric
and magnetic currents

Hi = z-components of the incident electric and
magnetic fields at the diffraction point

w = the source radial frequency

U,€ = the permeability and permittivity of the
medium

The functions f1 and g, are similar to Keller's diffraction coefficients

DS and Dh in (3-22) and (3-23) and are given by [16]

£, =1 -1, (4-12)
g, "8 & (4-13)
where
f = -1—S.'il'lE 1 $Po - ™ 1 $+P0 ] (4‘14)
hn cos(%) - cos(+=1%) cos(¥) - cos(:7°)
g = §sing L %% ] (4-15)
n n cos(%) - cos(—ﬁ— ) cos(ﬁ) - cos(—ﬁ— )
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Since the diffraction coefficients are functions as the direction of
observation, the equivalent currents are said to be non-physical because
any real physical currents should be independent of the observation
direction.

Although f and g become infinite at the shadow boundaries, the
singularities are cancelled by singularities in the f, and g,
functions. Expressions for the fo and g, functions at these shadow
boundaries are available in [11] and in [16]. However, as described in
[41], computers are notoriously inaccurate when subtracting two large
numbers whenever the difference is small, and, therefore, precautions

should be observed.

The f0 and g, functions are given by [16]

fa 0 <¥ < (n-1)m
fo = fa+fb (n-1)m < ?o <n (4-16)
fb m < Wo < nn
€, 0 < *o < (n-1)n
g€, =1 Ea*€p (n-1)mw <¥, < n (4-17)
€p < *o < nu
where n is the edge parameter given by (3-9). Here
sin*o
fa = cosv + cosP_ (4-18)
- -siny
€a = Tos¥ + cos?, (4-19)
sin(nn—*o)
fv = costmn) = cos{nn-¥ ) (4-20)
- -sin(nn-y)
p cos(nn-¥) + cos(nn-#o) (4-21)

Expressions (4-16) through (4-21) are valid for n>1; that is for the

exterior edge diffraction case. Expressions are given in [16] for the
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f‘ and g, diffraction coefficients when n<1, and these expression are

derived to consider the existence of multiply reflected fields. 1In

addition, expressions for f1 and g, are given near the incident and

reflected shadow boundaries for both the interior and exterior

diffraction coefficients.

4.4 Application to Backscatter Analysis

The theory of physical optics and physical diffraction, as
presented here, provide a convenient method for determining the
scattered field from a given conducting object. The approximate surface
currents and equivalent edge currents are uniquely defined in terms of
the incident fields, where the incident fields are normally taken to be
the ray-traced geometrical optics fields, except in the case of multiple
reflections. For multiple reflections either geometrical or physical
optics could be used for the initial reflections, with the physical
optics integration being performed over the final reflection.

A formulation for determining the reflected field from conducting
flat surfaces bound by straight edges, assuming an incident plane wave,
has been presented in [16]. For a flat surface bounded by straight
edges which is illuminated by a plane wave, the surface integrals of
physical optics can be resolved, in general, in closed form expressions
involving elementary functions. Similarly the line integrations of
physical diffraction can be resolved into closed form expressions. Then
for the class of objects formed of such surfaces and edges, analysis of
the backscatter fields, and hence the backscattered cross section can be

methodically formulated.



45

The theory of physical optics and physical diffraction provides a
powerful tool for analyzing backscatter from objects whenever the
objects are composed of a conglomerate of flat surfaces bound by
straight edges or surfaces which can be sufficiently approximated by
subdivision into flat surfaces. The theory is sufficiently general for
three dimensional objects to allow automated solutions to
electromagnetic scattering problems, and this is one of its most
appealing traits. The problem normally becomes most dependent on the
mastering of the geometrical orientations of a target. The intent is to
discern, for arbitrary aspect angles, the illuminated portions of each
surface and the illuminated portions of each edge, so as to identify the
contributions to the total field by mechanisms of first and higher order
reflections or diffractions. The decomposition of an object geometry
can be a complex and formidable task if a general method applicable to
any arbitrary configuration is desired. In the analysis, the second and
higher order reflections would, realistically, have to be performed
using the combination of physical and geometrical optics described
previously. This method retains the plane wave structure of the
reflected wave so that the physical optics integrations can be performed
in closed form. In later chapters and in Appendix B, an example is
given of the method of determining a double reflected field using solely
physical optics. The resulting expression is a complicated quadruple

integral which must be integrated numerically. This method is not

considered feasible for a manageable automated method of solution, but

it can be used in less complex geometries to provide an improvement in

accuracy.



CHAPTER 5

GEOMETRICAL THEORY ANALYSIS OF A CORNER REFLECTOR

5.1 Dihedral Geometry

The usefulness and accuracy of geometrical optics and the
geometrical theory of diffraction can best be evaluated through a study
of the radar cross section of a complex object. The object which has
been chosen for this study is the dihedral corner reflector shown in
Fig. 5-1. This corner reflector is comprised of two rectangular flat
conducting plates which are joined along an edge, forming an interior
angle of 2&. The dihedral corner reflector is oriented such that its
vertex is along the z-axis and the bottom edges lie in the x-y plane.
The monostatic radar cross section is computed analytically in the
azimuthal plane where 6 = 90° and 0° < ¢ < 360°. The two cases of
vertical and horizontal polarization are considered, where the
vertically polarized radar cross gsection is determined using the
components of the incident and scattered eleqtric fields which are
parallel to the z-axis, and the horizontally polarized radar cross
section is determined using the components of the incident and scattered

electric fields which are perpendicular to the z-axis.

5.2 Method of Analysis

The best technique to find the backscattered fields from the
dihedral corner reflector begins by considering the dihedral to be a
truncated two-dimensional ob;ect. as described in Chapter 2, which is
illuminated by an incident cylindrical wave. If the radar cross section

per unit length of the corresponding two-dimensional dihedral can be




47

ral®!

Plate 11

X

Fig. 5-1. Dihedral corner reflector geometry.
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found, the radar cross section of the truncated dihedral can be found
using (2-3). The cross section of the two-dimensional dihedral is shown
in Fig. 5-2.

It is necessary to develop some strategy for naming scattering
mechanisms from both geometrical optics and geometrical diffraction.
Toward meeting this requirement, a naming convention has been developed
in which each edge diffraction and each surface reflection is assigned a
unique number as follows:

-~ The diffraction from the exterior edge of plate I is assigned the
number 1.
- The reflection from the surface of plate I is assigned the number
2.
- The diffraction from the edge where plate I joins plate II is
assigned the number 3.
- The reflection from the surface of plate II is assigned the number
4.
- The diffraction from the exterior edge of plate II is assigned the
number 5.
With this notation, every possible component of the backscattered field
can be assigned a unique number describing the sequence of reflections
and diffractions. The component is specified by a coalescence of the
digits of the individual scattering mechanisms. The notation adopted
here is to precede each component by a capital letter C to identify the
‘ digits as the description of a component of the backscattered file.
The order of the digits defines the order of occurence of the individual

reflections and diffractions. As an example, the notation C251 uniquely




49

Component (3):
Edge diffraction
(Interior or exterior)
y
Component (@)
Surface reflection

Component (4):

Surface
/ reflection

Component (D
Edge diffraction

Component (5):
Edge diffraction

Fig. 5-2. Dihedral corner backscatter nomenclature.
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defines the component of the total backscattered field which is due to
reflection from plate I (reflection 2) followed by diffraction from the
outside edge of plate II (diffraction 5) and diffraction from the
outside edge of plate I (diffraction 1). The final diffraction direction
should be toward the original direction of incidence for the monostatic
case. Some typical scattering mechanisms are shown in Fig. 5-3.

Using the described notation, the total backscattered field can

be found as a summation of the following terms:

Components due to single reflections.
* c2 c4
- Components due to single diffractions.
* C1 c3 Cc5
- Components due to double reflections.
* C24 Cc42
- Components due to one reflection and one diffraction.
* Ci4 C41 C25 C25
- Components due to two diffractions.
* C13 C31 C53 C35 Ci15 C51
- Components due to three reflections.
* c242 C424
- Components due to two reflections and one diffraction.
& (C252 Ca14 C142 c241 C524 C4a25
- Components due to one reflection and two diffractions.
* Cci11 C525 Ci25 Cc251 C514 - C415
€253 €352 C413 €314

- Components due to three diffractions.




ANAN
NN
A

C425 C313

Fig. 5-3. Examples of components of the geometrical optics and
geometrical diffraction backscattered field.
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* (C131 €535 C135 €531 C153 €351
€513 C315 C151 C515 C313 €353
All these components, and one other to be discussed later, are included
in the analysis of backscatter of the dihedral corner for the
horizontally polarized case. For the vertically polarized case,
however, the components which include multiple diffraction between two
edges of the same plate will vanish due to the nature of the diffraction
coefficients, which impose the electromagnetic boundary condition that
tangential electric fields to a perfect conductor are identically zero.
These components,however, would be nonzero if the slope diffraction
coefficients [37] of GTD were utilized.

For a target composed solely of flat plates, the method of images
becomes especially convenient for cross section analysis. In a
cylindrical coordinate system, as shown in Fig. 5-1, the source and all
subsequent images for the dihedral corner lie in the x-y plane, so that
the coordinates of the location of all images can be tabulated using
only the P and ¢ coordinates while the z coordinate will always be
identically zero. The location of the source, diffraction points, and
all images of the source can be tabulated using the geometry of Fig.
5.1. Here R represents the distance from the source to the vertex of the
dihedral corner, and A is the length of one edge of the dihedral
corner. The locations of the source, images, and diffraction points are
given in a cylindrical coordinate system (p, ¢, z), as

- the source location:

P=(R, s, 0)

- the location of the point of diffraction on edge 1:
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P1 = (A, 2n—o. 0)

- the location of the point of diffraction on edge 5:
P5 = (An x, o)

- the location of the point of diffraction on edge 3:
P3 = (0, 0, 0)

- the image of the source through surface 2:

Pz = (R, 2n-2c-¢, 0)

- the image of the source through surface 4:

P‘ = (R, 2a-#, 0)

- the image of P2 through surface 4:
Pz‘ = (R, 4a+#-4m, 0)

- the image of P‘ through surface 2:
P,. = (R, 2n-da+s, 0)

- the image of P1 through surface 4:
P = (Av 3, 0)

14

- the image of P, through surface 2:
P52 = (A, 2m-3x, 0)
Next it is necessary to find the distance between any two points
for the geometrical theory. If any two points P, and P, are given in
terms of their cylindrical coordinates, then the distance D, between P,

and Pb' can be found by

N[

D - [ Pa. * Py~ 2PaPpC08 (85 Hy) + (Z472p)® ] (5-1)
The diffraction coefficients DS and Dh include a parameter, n,
which is defined in terms of the edge wedge angle, WA, as given in

(3-9). PFor the dihedral corner reflector, four edge parameters can be
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defined as

- diffractions from edge 1:
WA =0, n = 2
- diffractions from edge 5:

WA =0, n5 =2

- diffractions from the interior of edge 3:
WA = 2"‘2“ ’ nai = 2&/"

- diffractions from the exterior of edge 3:

WA =2x , n e = 2(1«/n)

3

It is necessary to determine if a given component exists for a
given direction of aspect. 1In geometrical optics, a reflected field can
only exist if a specular point exists on the conducting surface so as to
satisfy Snell's law of reflection. Similarly in geometrical
diffraction, a diffracted field can only exist if a specular point
exists such that the diffracted rays lie on the Keller diffraction cone
(this condition can be removed if the method of equivalent currents is
utilized). Associated with each reflection or diffraction are two
locations: the originating location from which the incident ray is
radiated and the terminating location at which the ray is observed. 1In
a sequence of reflections and diffractions of a single ray, there is one
originating location and one terminating location associated with each
individual reflection and diffraction. The originating locations are
the locations of the preceding source or edge diffraction while the
terminating locations are the subsequent observation or edge diffraction
iocatlons.

For a given reflection to exist, the ray from the originating
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location to the associated terminating location must pass through the
reflecting plate. In this case, either the originating or terminating
location is actually an image of a preceding or subsequent source or
diffraction point. If the originating point is given in terms of its
rectangular coordinates in the x-y plane as (xa.ya). and if the
terminating point is given in terms of its rectangular coordinates in
the x-y plane as (xb.yb). then the line through the two points is given

as
Yp =~ Va YaXp ~ YpXa
v - [x——j x [——— (5-2)
b~ X Xp - X

A point on the plates of the dihedral, in the x-y plane can be
given in terms of its cylindrical coordinates where ¢ = 27-a on plate I
and ¢ = on plate II. The radial distance of the intersection of the
ray and the plate is then

Ya¥b_~ Yb*a
(Vp - vp)coss - (xp - x,)sins

p = (5-3)

The reflection exists if p lies in the range 0 < p < A where A is the
width of the dihedral plates. Equation (5-3) has no solution if tan ¢=
(yb-ya)/(xt;xa). and hence no reflection can exist.

For any reflection-diffraction sequence which begins or ends with
a reflection, the reflection surface must also be visible to the source
and observation points. For the monostatic cross section of the

dihedral corner, the plates are visible or partially visible at certain

aspects.



For reflection 2, the surface is

- entirely visible if 0<f<a or n-o<#<2n

- not visible if cos“[ﬂgiggﬂ <o

- partially visible elsewhere.
The visible portion of the plate is given by

sin(#-o
sin(fra) <P S A
For reflection 4, the surface is

- entirely visible if O<#<n+x or 2m-a<F<2n

- not visible if n+u<¢<2n-cos"[ﬂ§9§21
R

- partially visible elsewhere.
The visible portion of the plate is given by

qsinii*a;
sin(f—o

Ia

p<A

In terms of the diffractions mechanisms, all diffractions, if

they exist, lie on the Keller cone for a truncated two dimensional

(5-4a)

(5-4b)

(5-4c)

(5-5a)

(5-5b)

(5-5c)
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geometry. A particular diffraction will exist if the diffracting edge

is visible from the source and observation point. For the dihedral

corner reflector

~ Edge 1 is visible if

0<u<cos—’[599§91 or m-a<#<n

R
~ Edge 3 is visible if
0<f<x or 2m-a<#<2n (interior diffraction)
a<p<2no (exterior diffraction)
- Edge 5 is visible if

O<f<n+a  oOr 2n—cos“[A°°s°j<¢<2n
R

(5-6a)

(5-7a)
(5-7b)

(5-8a)
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The angles ¥ and ?0 of the diffraction coefficients of Section

3.3 are found from geometrical considerations. The angle ?o is the
angle between the wedge face and the ray from the originating point to
the diffraction point. The angle ¥ is the angle between the wedge face
and the ray from the diffraction point to the terminating point.
Locating the originating or terminating point by its rectangular
coordinates in the x-y plane (x5, ya). the corresponding angle, ¥, or ¥,

can be found

- on edge 1 as

- |¥a — Y
$ =mn+a+ tan }|-2—1 (5-9)
1 X, - X
a 1
- on edge 3, for interior diffraction as
- |¥a ¥
$ . =+ tan }|-2 3 (5-10)
ai X - x
a 3

- on édge 3, for exterior diffraction as

_Jyv, - vl
¥,e = & *+ tan 1l_2____3J (5-11)
X, - X
a £}
- on edge 5 as
—4|¥a — Y
¥, = o + tan ‘[—‘!—3] (5-12)
Xa ~ %g

where wl. *31' *ae' or ?5 can represent either ¥ or ?o for a given
diffraction, and where (xj. yJ) are the coordinates of edge j for j =
1,3,5. In the application of these equations, particular attention must
be paid to the angle of the inverse tangent function. The angle of
tan~!(y/x) lies in

- Qquadrant I if y > 0 and x > 0

- quadrant Il if y > 0 and x < 0
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- quadrant III if y < 0 and x < 0
- quadrant IV if y < 0 and x > 0
and the angle is chosen such that the diffraction angles, ¥ and ?0 will

lie in the range 0 < ¥ < 2n and 0 < ¥, < 2m.

Although the diffracted field from a pair of parallel edges is
continuous, as is discussed in Section 3.4, cases may exist where both
edges of a plate may not be visible near normal incidence. This
normally occurs because another unrelated object passes in the line of
sight from the target to the radar. Such is the case, for example, in
the 90° dihedral corner for ¢ slightly greater than 45° when Plate II
obstructs the view of one of the edges of Plate I. Clearly in cases such
as this, there is only one edge diffraction existing and the field is no
longer continuous near normal incidence.

Geometrically, under these circumstances, one portion of the
plate is illuminated while another portion is not illuminated. An
abrupt discontinuity in the field incident upon the plate is created
because of the shadow cast by the obstructing object. Since abrupt
discontinuities must not exist, some diffraction mechanism should be
introduced to assure continuity in the radar cross section pattern. In
the analysis of the dihedral corner reflector, an edge diffraction was
imposed exactly at the shadow edge to account for the field
discontinuity. This edge position is a function of the dihedral
orientation since the shadow edge moves as the dihedral corner reflector
is rotated. This imposed edge diffraction was included if the aspect
was such that the incident field was nearly normal to one of the two

flat plates, and if, at the same orientation, the second plate cast a
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shadow across the first. The appropriate choice of edge parameter, n,
is not apparent for this imposed edge so some discretion is allowed.
Since only a half plane is illuminated, it seems appropriate to select
an equivalent edge which has only one face illuminated; that is an edge
with included angle in the range 0° < WA < 90° . Since the resulting
cross section is relatively insensitive to the choice of n, a wedge

angle of 0° was chosen; that is, n = 2 for the imposed edge.

In the backscatter analysis using the Geometrical Theory of
Diffraction, many terms in the total field are reciprocal. From the
notation of Section 5.1 it is evident that to satisfy reciprocity, the
terms C241 and Ci42 are equivalent, the terms C35 and C53 are
equivalent, and so on. Other terms, such as C141 and C353 have no
reciprocal pair because the sequence of reflections and diffractions is
symmetric. Intuitively it is not clear whether these symmetric terms
should be included once or twice in the total field, but it can be
shown, using the geometry of Fig. 5-4 that these terms should be
included twice to insure field continuity. Single reflections and
single diffractions, however, are not to be included twice.

In Fig. 5-4, the source/receiver and a diffracting edge (in this
case, edge 5) are illustrated along with their images through Reflection
2. A ray from the source image will diffract on the edge image and can
follow one of three paths to the receiver; either a direct path, a

reflected path (from surface 4) or a diffracted (from edge 5), as

" i{llustrated. These three paths correspond to the three backscatter

components C52, €524, and C525, respectively, and all three terms are

required to assure continuity near the reflected shadow boundary. In
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addition, each path also has a reciprocal pair which corresponds to the
ray which leaves the source, follows one of three paths to edge 5, after
which it diffracts from the source. The three paths in this case
correspond to the backscatter components C25, C425 and C525. Again, all
the paths must exist to ensure continuity in the vicinity of the
reflected shadow boundary. In this geometry, the terms C52 and C25 are
reciprocal pairs, the terms C524 and C425 are reciprocal pairs, but C525
has no reciprocal pair. Therefore C525 must be included twice in the
analysis. This concept of including symmetrical terms twice (except for
the single reflection or single diffraction terms) may not be
intuitively obvious but seems to be analytically necessary. Any third
order mechanism which is symmetric in its sequence of reflections and

diffractions will have no reciprocal pair.

5.3 Backscatter Components

One of the advantages of analyzing target backscatter using the
geometrical optics and geometrical diffraction theories is that the
effects of different mechanisms can be separated so that the effect of
each structural element in the target can be identified. A nomenclature
for enumerating the different reflection-diffraction mechanisms was
formulated in Section 5.2, and it is utilized in this section to
identify each backscatter component.

The dihedral corner reflector was studied for a right, an obtuse,
and an acute interior angle for which experimental results were
available. The radar cross section components were analyzed at a
frequency of 9.4 GHz where the dihedral dimensions A and B were both

5.6088 A. Two polarizations were considered. The vertical polarization
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was the case in which the incident electric field was parallel to the
longitudinal axis of the dihedral, and the horizontal polarization was
the case in which the electric field was perpendicular to the
longitudinal axis of the dihedral. The dihedral corner reflector
interior angles for which experimental results were available were 90°,
98° and 77°.

In Figs. 5-5, 5-6, and 5-7 the backscatter cross section for
vertical polarization is illustrated for different reflection and
diffraction mechanisms as a function of observation direction ¢. The
total radar cross section is subdivided into groups of individual
components and the radar cross section due to each group is shown
separately. Each figure contains eighteen graphs, and each graph shows
the radar cross section of a particular group. The subdivision usually
combines only the symmetric or reciprocal components of the total radar
cross section. For example, graph 1 shows the backscatter cross section
when only components C2 and C4 are considered, where C2 and C4 are the
single specular reflection components from the dihedral plates. Graph 4
illustrates the component due to the imposed edge described at the end
of Section 5.2. Graph 17 shows the cross section due solely to all the
third order diffractions which include diffraction from the vertex of
the dihedral (edge 3). These terms are all identically zero for the
vertically polarized case since slope diffraction coefficients have not
been considered. The final graph, numbered 18, shows the total cross
section as the sum of all individual components up to third order
mechanisms as described in Section 5.1. In Chapter 7 these total cross

sections will be compared with experimental results to illustrate the
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accuracy of the geometrical theories.

The third order reflections C242 and C424 were included in the
analysis, but they are not shown in the figures because they do not
contribute for the right and obtuse dihedrals, and they contribute over
less then one half of one degree for the acute dihedral. The graphs of
these figures were computer generated using one-degree increments and
hence passed over the third order reflection contribution. It has been
verified, using a expanded angular scale, that these third-order
reflections are necessary to guarantee continuity of the cross section
pattern over the half degree range through which they are nonzero.

In Figs. 5-8, 5-9, and 5-10 the backscatter cross section for
horizontal polarization of the 90°, 98°, and 77° dihedral corner
reflector is decomposed into individual components (in a similar manner
as for the vertically polarized cases). Experimental results are not
available for this case, but horizontal polarization is important to
consider because the multiple diffraction terms are generally stronger
for this polarization. In graph 17, all the third-order diffraction
terms which included diffraction from the dihedral vertex are nonzero
for the horizontal polarization. However, all these terms were zero for
the vertical polarization. The total field is again shown in graph 18.
Unfortunately, experimental data was not available for the horizontal
polarization case so these results could not be compared with

measurements.
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CHAPTER 6

PHYSICAL THEORY ANALYSIS OF A CORNER REFLECTOR

6.1 Dihedral Geometry

The physical optics theory and the physical theory of diffraction
provide an efficient method for determining the reflected and diffracted
fields from an object composed solely of flat plates which is
illuminated by an incident plane wave. The accuracy of this theory can
be best evaluated by application of the theory to an actual scattering
problem for which experimental results are available.

The dihedral corner reflector. described in Section 5.1 and
illustrated in Fig. 5-1, is studied using the physical optics theory and
the physical diffraction theory in this chapter. Again the backscatter
cross section in the azimuthal plane as a function of observation angle
is found, just as in Chapter 5, in order that the accuracy of GTD and

PTD can be contrasted.

6.2 Method of Analysis

For the analysis of the dihedral corner reflector using the
theories of physical optics and physical diffraction, the best technique
of analysis was found to be the equivalent current method described in
Chapter 4. The PO and PTD fields, being continuous and well behaved,
allow approximations in the calculations of diffraction and reflection
angles and distances, most notably the so-called far-field
approximation. In the "far-field" approximation, distances are commonly
approximated by the first term of a Taylor series expansion when used as

amplitude variations. When used as the argument of a complex
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exponential in phase calculations, they are approximated by the first
two terms of the Taylor series expansion. Similarly in the "far-field"
analysis, angles (such as ¥ and woused in the diffraction coefficients)
can be found using the approximation that all rays from the target to
the distant observation point are parallel. These approximations,
permissible in the physical theory, were not allowed in the geometrical
theory near shadow and reflection boundaries since small inaccuracies in
Y and !% can lead to large variations in the diffracted fields and
discontinuities in the cross section pattern.

When using the theory of physical optics, the first task in the
analvsis of the dihedral corner reflector is to identify, for a
particular aspect, the illuminated and nonilluminated portions of each
plate of the reflector. As illustrated in Fig. 6-1, the illuminated
portions are determined using ray tracing methods. In this figure it is
convenient to consider the direction of an incident plane wave to be
fixed, and allow the corner reflector to be rotated. The results, of
course, are identical to those obtained by leaving the dihedral fixed
and rotating the incident field direction. The choice of method is
purely a matter of convenience.

In Fig. 6-1, only the illuminated portion of Plate II is
considered for the single reflected field C4, and Plate I is temporarily
ignored except for the shadowing effect it creates at certain aspects.
In Fig. 6-2, the illuminated portion of Plate II is identified
' considering only the double reflected field component C24. In these
figures, the lower row illustrates different orientations of the

dihedral corner relative to the incident field. In the upper row, the
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projected view of the illuminated plate (Plate II) is illustrated with
the shaded regions indicating nonilluminated regions and the nonshaded
regions indicating illuminated regions. Depending upon the orientation
of the dihedral corner reflector, Plate II may be entirely, partially or
not at all illuminated by the singly and doubly reflected field.

If the methods of analysis presented in [16] are employed, the
theories of physical optics and physical diffraction can be conveniently
utilized to determine the backscattered fields. The surface integrals
associated with physical optics and the line integrals associated with
physical diffraction are obtainable in closed form, and they are readily
amenable to computer implementations.

Most of the geometry relationships necessary for the physical
analysis are identical to those already presented in Chapter 5. The
essential method used in finding the reflection terms begins by
identifying the corners of the illuminated portion of each plate for
different orientations. It happens that in the azimuthal plane cross
section analysis, these illuminated portions are always rectangular for
the dihedral corner reflector. It is not difficult to then integrate
the induced physical optics current density across the plate since the
current density is uniform in amplitude and linear in phase across the
plate. For the diffracted fields, the directions of incidence and
observation can be calculated using exactly the same methods utilized in
the geometrical analysis. Even simpler formulations can be obtained
using the far-field approximations wherein all rays from the distant
source to the dihedral are considered parallel. Once the directions of

incidence and diffraction are known, the diffraction parameters ¥, {j ,
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and n are used to determine the equivalent edge currents using (4-10)
and (4-11). The field due to this current is obtainable from the line
integrals of (4-6) and (4-7). These integrals are readily performed
along the straight edges since the current is uniform in amplitude and

linear in phase along the plate.

6.3 Alternate Methods for Double Reflections

The methods presented thus far for determining the physical
optics field are especially convenient for objects composed of flat
surfaces illuminated by an incident plane wave. Allowing initial
reflections in a reflection/diffraction sequence to be analyzed
geometrically using ray techniques maintains the planar nature of the
incident field and subsequently renders the theory applicable to
computer formulations.

The accuracy of this method when compared with experimental
results is reasonably acceptable for the right and obtuse dihedral
corner reflector, but it is not as accurate in the acute angle dihedral
corner reflector case. To improve the accuracy for this case, a more
rigorous analysis technique can be formulated using strictly physical
optics theory for all reflections, particularly for the double reflected
field. The formulation is presented in Appendix B for the vertical
polarization radar cross section of a dihedral corner of arbitrary
interior angle. This more rigorous approach does yield more accurate
results for the acute angle dihedral in the forward region. However it
" is much more complex to formulate, and it is probably not tractable for
many of the more complex geometries.

It is interesting to compare the current density which exists on
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the second plate of the acute dihedral corner reflector due to the
double reflection mechanism when either geometrical optics or physical
optics is used for the first reflection. If geometrical optics is
utilized for the first reflection, the incident field on the second
plate (Plate II of Fig. 5-1) is uniform over the illuminated portion of
the second plate and is zero over the remaining nonilluminated portion.
However, if physical optics is utilized for the first reflection, the
incident field on the second plate is found from a complicated integral
expression which exists over both the illuminated and nonilluminated
regions of the plate. The physical optics approximation may be used to
find the current density on the second plate given the incident magnetic
field. Hence the physical optics current density on the second plate
(Plate II) could take one of two distributions; being proportional to
either the incident geometrical optics field or the incident physical
optics field.

The normalized amplitude of the current density J:g on Plate 1II,
found using geometrical optics theory for the first reflection (on Plate
1), is illustrated using contour plotting techniques in Figs. 6-3, 6-5,
and 6-7. The corresponding three-dimensional patterns of the normalized
current density amplitude are shown in Figs. 6-4, 6-6, and 6-8. The
current density J;: is normalized to the value of the physical optics
current J§§ where J:: represents the physical optics current density
which would exist in the illuminated portion of Plate Il if geometrical
optics theory was used for the first reflection. The current density in
these figures has only its magnitude illustrated across the plate. On

the contour plots a dashed vertical line has been drawn to indicate the

C- o
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plate II due to the fields radiated by the physical
optics surface current density on plate I.
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boundary between the illuminated and non-illuminated portions of Plate
11 which would exist if geometrical optics theory was used for the first
reflection.

Using geometrical optics, the left portion A, would be
illuminated and would have a uniform physical optics current density
(normalized to unity) while the right portion, A,, would be in shadow
and would have zero physical optics current density. It should be noted
that the boundary of the geometrical optics illuminated portion,
indicated by the dashed vertical line, seems to fall quite near the
0.500 contour line. This indicates that at the boundary the physical
optics current density on Plate II due to the phvsical optics reflection
from Plate I is very nearly one-half the current density which would
exist on Plate II if the geometrical theory was used for the reflection
from Plate 1. Whereas the geometrical optics theory predicts a sharp
discontinuity in the normalized current density from unity to zero at
this boundary, the physical optics theory predicts a continuous current
distribution crossing this shadow boundary at a normalized current
density amplitude of 0.5.

The expression for the current density J;: used to produce these
contour and three-dimensional plots is derived in Appendix B and is
presented by (B-17) as a function of the x, y, and z coordinates of a
surface element on the plate. The current density for the vertically
polarized case is everywhere z-directed on the plates of the dihedral

corner reflector.

6.4 Backscatter Components

The components of the backscattered field from the dihedral
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corner reflector, using the notation of Chapter 5, and using strictly
physical optics theory for the double reflected fields, is illustrated
in Figs. 6-9, 6-10 and 6-11 for the right, obtuse and acute angle
dihedrals. The total radar cross section is subdivided into individual
components which are plotted in separate graphs in these figures. The
groups are chosen so as to combine mutually symmetric or reciprocal
components. For these computations the dihedral plate dimensions were A
=B = 5.6088)A and the incident field was vertically polarized at a
frequency of 9.4 GHz. The radar cross section, as a function of the
dihedral orientation over the first 90° on each side of the forward
region is illustrated. In each figure, the last graph (numbered eight)
gives the total backscatter cross section as the sum of all the
individual components. These final cross section calculations will be
compared with experimental results in the next chapter.

These figures are interpreted using the same numbering
conventions constructed for the geometrical analysis of Figs. 5-5
through 5-10. For example, graph 1 illustrates the cross section of the
combined fields of the two single reflections, C2 and C4, from the two
plates of the dihedral corner reflector. Likewise, graph 2 illustrates
the combined cross section due to the single diffracted fields from the
outside plate edges C1 and C5.

It was found that not as many backscattered terms were needed in
the PTD analysis, as in the GTD analysis, to achieve continuity of the
cross section pattern. It is very interesting to note that while the
corresponding backscatter terms predicted by the physical and

geometrical theories are strikingly different, the total cross section
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found as the sum of all the individual components are remarkably
similar.

Since the backscatter cross section patterns from the physical
theory compared well with experiment using only the terms illustrated in
Figs. 6-9, 6-10 and 6-11, higher order diffractions were not
considered. It is likely that the inclusion of higher order terms would
tend to refine the results to an even closer agreement with experiment.
However, there does seem to be some contention among authors about the
method of application of the physical theory of diffraction when used to

determine double and higher order diffracted fields [26]-[28].



CHAPTER 7

COMPARISON WITH EXPERIMENTAL RESULTS

7.1 Configuration

The theories of geometrical optics and geometrical diffraction,
and the theories of physical optics and physical diffraction can be
judged in terms of their accuracy by comparison of analytical and
experimental results.

The specific dihedral corner reflectors, for which limited
experimental results were available, were constructed of two square
nlates each with sides of 5.6088 A. These experimental measurements,
reported in [20], were conducted at 9.4 GHz using vertically polarized
fields (i.e. the electric field vector was parallel to the longitudinal
axis of the dihedral corner reflector). The backscatter cross section,
as a function of azimuthal angle in a plane perpendicular to the
dihedral corner longitudinal axis, was available for reflectors with
90°, 77° and 98° interior angles.

The measured radar cross section for the 90° dihedral corner
reflector, shown as the solid curve in Fig. 7-1, is characterized by a
large return in the forward region due to a large specular double
reflected field. It is this large cross section, which is relatively
smoothly varying over a wide angular range, that makes the dihedral so
desirable as a radar calibration and testing target [30]-[32]. The 90°
corner reflector, in addition, has a large cross section at ¢ = 45°
since a large singly reflected specular field exists whenever the

direction of observation is normal to one of the dihedral corner
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reflector's faces. The measured radar cross section of the 98° dihedral
corner reflector, shown by the solid curve in Fig. 7-2, is characterized
by the same large single reflection lobes near angles at which the
observation direction is normal to a face of the reflector; however the
large double reflected field is noticeably absent. This characteristic
decrease in the double reflected field along surface junctions was the
motivation for Knott's work in RCS reduction [8]. The measured radar
cross section of the 77° dihedral corner reflector, shown by the solid
curve in Fig. 7-3, is characterized by a large but rapidly fluctuating
magnitude in the forward region. The two sharp nulls in this region
uld eliminate thie dihedral ac a ueeful target for radar testing and
calibration, because lost detection by a radar system could be caused
solely by a misalignment of the calibration target. Nonetheless, study
of the acute angle dihedral corner reflector is an important test of the
analytical theory, since for this corner reflector, the higher order

reflections and diffractions become important.

7.2 Geometrical Optics

The backscatter cross section of the dihedral corner reflector
found using the geometrical optics theory is compared with experimental
results in Figs. 7-1, 7-2 and 7-3. The methods discussed in Chapter 5
were used to locate specular points on each surface, if they existed,
and for each specular reflection point a source image could be defined.
The analytical results here were calculated at a distance of 200X which
" satisfied the far field criterion. The geometrical optics cross section
has a very large return over the very small angle where a specular point

due to single reflection exists on a dihedral face. The 90° dihedral
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corner, in addition, has a double reflected field which is very large
over -T/4 < ¢ < /4. As discussed in Chapter 5, the cross sections of
flat plates, due to geometrical optics alone, is a function of the
distance of observation and will increase without bound as the distance
of observation increases. For this reason, if the observation distance
is increased beyond 200 A, the geometrical optics single reflected cross
section will increase in magnitude, but will decrease in angular extent,
approaching an infinite cross section over zero angle. The double
reflected field would also increase without bound in the 90° dihedral
case but yould exist over the same angular extent of -T/4 < ¢ < T/4 for
far distances.

From these illustrations it is apparent that the theory of
geometrical optics by itself is a poor method of finding the radar cross
section of an object composed of flat plates. The theory predicts
infinite cross section whenever a specular point exists on a flat plate
of the structure and zero cross section when no such point exists.
Furthermore the cross section is strongly dependent on the distance from
the target. However, even though geometrical optics is inappropriate
for flat surface structures such as this, it should be noted that
geometrical optics has found useful application in the past for analysis
of bodies which are composed solely of curved surfaces without abrupt

boundaries.

7.3 Geometrical Diffraction
The addition of geometrical diffraction terms to the geometrical
optics terms significantly improves the accuracy of the analytical

results when compared with experiment. The discontinuities in the
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diffraction coefficients of GTD produce discontinuities in the
backscattered field, which remove the discontinuities inherent in the
geometrical optics backscattered fields. And, equally important, the
backscattered fields found using the combination of geometrical optics
and the geometrical diffraction are nearly invariant with distance of
observation provided the distance is large in comparison to the target
size. The cross section must be independent of distance for it to be a
useful parameter in the radar range equation of (2-5), since the basic
motivation behind introducing cross sections as target parameters is to
separate the effects of radar distance and configuration from the target
specification.

In Figs. 7-4, 7-5 and 7-6 the radar cross section of the dihedral
corner reflector found using the combination of geometrical optics and
geometrical diffraction is compared with experiment for the 90°, 98° and
77° corner reflector. Again the distance of observation was 200 A for
these comparisons, but the cross section is relatively independent of
distance, provided the distances are large. Computationally, however,
it is best to choose a distance which is not too much larger than that
given by the far field criterion, because as the distance increases, the
accuracy required in the calculations of Y and ¢b of the diffraction
coefficients increases. Even at 200 A, considerable care must be taken
to avoid any approximations, especially when determining { and ¢b'
Seemingly insignificant inaccuracies in these angles can yield large
errors in the radar cross section near shadow and reflection
boundaries.

The theory of geometrical diffraction, along with geometrical
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optics, performs well at predicting the experimental cross section
pattern. The theory matches many of the major and minor lobes of the
experimental curves quite accurately. It should be remembered that to
achieve this quality of accuracy, especially for the acute angle
dihedral, up to third order reflections and diffractions have been
considered. For the vertically polarized case, for which experimental
results were available, many of the multiple reflection terms from edge
to edge are zero. For the horizontally polarized case more of these

multiple diffractions become important.

7.4 Physical Optics

The theory of physical optics is applied to the dihedral corner
and compared with experiment for the right, obtuse and acute corner in
Figs. 7—7; 7-8 and 7-9. The physical optics terms were found using the
methods of Chapter 6 in which a surface current density is introduced in
proportion to the incident tangential magnetic field. The single
reflected fields are evaluated in terms of this induced surface current
density. The double reflected fields are determined using the method of
Knott [18] in which all double reflected components are determined by
considering geometrical optics (image) reflection at each first
reflection, and physical optics reflection (in terms of the incident
geometrical optics field) at the second reflection. The advantage of
this method is that all the integrations associated with finding the
reflected physical optics fields can be performed in closed form to
avoid costly numerical integrations.

For the obtuse and right angle dihedral corner, the physical

optics analysis approximated in this manner gives good results in most
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regions. The theory is certainly more accurate than geometrical optics
by itself, but it is not as accurate as the combination of geometrical
optics and geometrical diffraction.

The acute angle dihedral, unfortunately, has significant
inaccuracies in the analytical cross section when compared with
experimental data. The results are acceptable near the single specular
reflection lobes but are 1nconsisfent with experiment elsewhere. This
method of using a combination of geometrical optics and physical optics
for double reflected fields does not appear to yield satisfactory
results for acute angle dihedral corner reflectors which induce strong

muitiple refiections.

7.5 Physical Diffraction

The addition of physical diffraction terms to the physical optics
field of the right, obtuse, and acute dihedral corner reflectors is
compared with experimental results in Figs. 7-10, 7-11, and 7-12. The
physical diffraction fields tend to be smaller than the physical optics
fields, but they give some improvement to the cross section pattern in
comparison to the experimental resulté.

The diffraction terms included in the analysis of these cross
section patterns were all those examined in Chapter 4. The diffracted
fields were found using the methods of [16] whereby all diffracted
fields could be obtained in closed form and numerical integrations were
unnecessary. Double and triple reflected fields were included in these
figures and all initial reflections were performed geometrically using
image theory whereas the final reflection was performed physically and

in closed form.
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In Fig. 7-12 it is apparent that even the inclusion of physical
diffraction to the backscatter analysis is insufficient to bring the
analytical results satisfactorily close to experiment for the acute
dihedral corner reflector. The inaccuracy seems to lie in the
approximate method by which the double reflected field was obtained, and
it is this component which can be improved by choosing an alternate
technique.

In order to improve the analytical results for the dihedral
corner reflector, the double reflected field is reevaluated using the
strict physical optics method of Section 6.3 and Appendix B. The
resulting cross section pattern with the inclusion of this superior
reflection computation is illustrated in Figs. 7-13, 7-14 and 7-15. The
only change between these and the previous figures was the reevaluation
of the double-reflected field by the improved technique. The
significant improvement for the 77° dihedral corner reflector cross
section is evident. To achieve this accuracy, the analysis was much
more complex, and it involved a complicated and time-consuming numerical
evaluation of a quadruple integral. For more complex geometries the
formulation of a corresponding integration may be an insurmountable

task.

7.6 Comparison of Scattering Theories

The radar cross sections determined using geometrical optics and
geometrical diffraction, and the radar cross sections determined using
physical optics and physical diffraction, can be readily extended for
comparison on the back side of the dihedral so that the full 360°

azimuthal plane may be examined. Although the dihedral corner reflector
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is intended for use in the forward region only, where the double
reflections are dominant, the analysis on the back side allows the
method of GTD and PTD to be evaluated for the exterior corners.
Exterior corners will exist on more complex structures such as ships,
aircraft or other objects.

Although experimental results were not available for the back
regions of the dihedral corner reflector, the geometrical and physical
theories can be compared against each other in Figs. 7-16, 7-17 and 7-18
for the three dihedrals of interest. These figures show that the
geometrical theory and the physical theory are nearly identical for the
ack side of the dihedral corner reflector. The thearies wonld be
expected to provide nearly equivalent results for general scattering

from arbitrary exterior corners.
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CHAPTER 8

CONCLUSION

The combination of Geometrical Optics (GO) and the Geometrical
Theory of Diffraction (GTD) and the combination of Physical Optics (PO)
and the Physical Theory of Diffraction (PTD) have been used to predict
the radar cross section of a dihedral corner reflector, and the
analytical results were shown to agree quite well with experimental
data.

The geometrical theory and the physical theory share certain
advantages over other analytical techniques, such as the Moment Method,
in that both theories provide insight into the mechanisms of reflection
and diffraction. They identify specific points or regions on a
conducting body which contribute to the total radar cross section at a
particular aspect. In this respect, they can give a better
understanding of electromagnetic scattering from conducting surfaces and
edges.

Upon examining the comparison of the theories with the
experimental results for the dihedral corner reflector, the combination
of geometrical optics with the geometrical theory of diffraction and the
combination of physical optics with the physical theory of diffraction
would be expected to provide nearly the same degree of accuracy over a
considerable range of aspect angles. The geometrical theory does,
however, seem to have some advantage in predicting the fine details of
the dihedral cross section pattern especially near the minor lobes of a
given pattern. The physical theory does not predict the minor lobes as

well.
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Considering only the geometrical optics and physical optics

theories, and hence neglecting edge diffraction, the geometrical optics
theory alone is unable to provide a reasonable first order approximation
to the cross section pattern, while the physical optics theory alone may
be satisfactorily accurate. In the geometrical theory, the diffraction
mechanisms are mandatory, at least for targets formed of planar
surfaces, to obtain satisfactory results. In the physical theory, the
diffraction mechanisms tend to be reqﬁired only to add refinements to
the cross section pattern.

When applied to targets formed of planar surfaces, the

diffraction terms which must be carefully considered to ensure
continuity of the total field. Angles and distances used to find
diffraction coefficients must be accurately obtained for an observation
point lying in the far field. 1In particular, the conventional
"far-field” approximation cannot be used in all except the least complex
geometries, such as the flat plate. For a planar reflecting surface,
the diffracted fields become infinite as the aspect direction nears the
normal to the flat surface. The sum of the diffracted fields however
will be finite as normal incidence is approached (as is shown in
Appendix A), provided that two mutually parallel edges exist which are
perpendicular to the plane of observation. If two mutually parallel
edges do not exist (as in an arbitrary polygonal shape), the shape must
be subdivided into rectangular strips as an approximation. In addition,
if two mutually parallel edges do not exist because the view of one of

the edges is obstructed by the presence of another object in the aspect




132
line-of-sight, then an edge diffraction should be imposed at the
obstruction shadow boundary to ensure continuity in the total field near
normal incidence. When considering third order (or higher)
reflection/diffraction mechanisms, it has been shown that symmetrically
reciprocal diffraction terms must be included twice in the total cross
section to achieve a continuous cross section pattern.

When applied to targets formed of planar surfaces, the physical
theory contains few discontinuities and can be used with the
conventional "far field" approximations commonly utilized in
electromagnetic theory. Indeed if the far field approximations are
used, the incident field will be a plane wave and the surface and line
integrations associated with physical optics and the physical theory of
diffraction can be performed in closed form provided the object is
composed solely of flat surface bounded by straight edges. To allow
this closed form integration solution for multiple reflections, only the
last reflection should be performed using physical optics induced
currents while all preceding reflections should be performed
geometrically in terms of images to preserve the planar nature of the
incident field. This approximate method was found to be acceptably
accurate for the obtuse and right dihedral corner reflectors, but was
inadequate for the acute dihedral corner reflector. The solution for
the acute dihedral corner reflector, using strictly physical optics for
all the reflections associated with the double reflected field, is
tractable, but for other more general geometries the solution is not as
readily obtained. This alternate method does provide an improvement in

accuracy, but it is not deemed appropriate for a general method for
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analyzing backscattered fields from complex targets formed of flat
surfaces. A comparison of the current distributions on the dihedral
plates, as obtained by these two lethoas. has been included. When
considering higher order diffractions, several authors have debated on
the method of application of the physical theory of diffraction when
compared with more exact analytical solutions.

The techniques developed to analyze the scattering from a
dihedral corner reflector in the principle azimuthal plane should be
extended to include oblique incidence directions. Some GTD approaches
which might prove successful are using equivalent currents, subdividing
a target intc rectangular segmente, utilizing the cemi-heurietic corner
diffraction coefficient, or using Michaeli's generalized diffraction
coefficients. Some PTD approaches which could be utilized include the
equivalent currents method and Mitzner's incremental length diffraction
coefficients.

Other corner reflectors of interest for further study include the
triangular and square corner reflectors, each of which is composed of
three flat plates. Also, in the past years, enthusiasm has developed in
studying objects which are covered with dielectric or lossy materials.
These are just a few of the topics open for study in electromagnetic

scattering and each individual subject will surely open even newer

domains of inquiry.
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APPENDIX A

CONTINUITY OF FLAT SURFACE BACKSCATTER CROSS SECTION
NEAR NORMAL INCIDENCE USING THE GEOMETRICAL
THEORY OF DIFFRACTION

The diffracted fields from a conducting edge become infinite as
one approaches normal incidence to one of the flat surfaces that make
up the edge whenever Keller's diffraction coefficients are employed.
Ross [17] has shown, however, that the total diffracted field by two
edges in a flat plate are continuous, even though each diffraction
individually is discontinuous. In this appendix, the fields are shown
to be continuous for a fiat surface of arbiirary edge wedge angle less
then 270°, provided the two edges are parallel.

The geometry of interest is shown in Fig. A-1. Two edges of

arbitrary edge parameters n, and n, diffract an incident wave from the

direction ¢ = ?1 = ndwa. The incident field can be written as

Ei - E0e+jk(xcoswl+ysin?1) (A-1)

where the polarization is intentionally unspecified and can be either
of the two principle polarizations. A general polarization can always
be decomposed into components of these two polarizations. The plate
width is w.

The diffracted field from edge 1, given either soft or hard

polarization of the incident field is
e-jksz
N
e Jks,

/5

d
Eg'p(s) = E1(Q,) Dg y(¥, %, .n) (A-2)

dz _ el A-3
Es.h(s) = E (Qz) Ds.h(*a'wa'“a) (A-3)

When using far field techniques
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w
El(q) = Eoe’jksc“"’x (A-4)
w
Ei(Qz) ..:. Eoe.’.jk;cosq’i (A—S)
w
e-Jks1 ~ e-jk(s+§cos*1) (A=6)
Vow o
w
e_jE§3 ~ e-jk(ngcos?i) (A7)
/s, - Vs
The total diffracted field is
dz dz
Eg n(s) = Eg p(8)+ES" (s) (A-8)
= {E 1 ID, (¥, %, .0 )e ~Jkwcos¥,
Lo Vs )
+Ds.h”’a’q’z'nz)eﬁkwcos*i]
where
j"/‘sin— [ . ]
Dg p(¥.¥,n) = ” * =

n
+ (A-9)

n/ank lcos(%)—l cos(%)-cos(Q%)J

The difficulties occur when ¥ = g (normal incidence) in both

diffraction coefficients. Other discontinuities can occur, for
instance at normal incidence to the second surface bounded by the edge,
but each diffraction discontinuity must be compensated by an opposing
diffraction on the shared surface.

The total field can be expressed as

Jks ~jn/s -
Eg p(s) -={ /_} [ ] [2, 7 By (A-10)

where the upper sign is chosen for soft polarization and the lower sign

" is chosen for hard polarization, and



1 b4 1 n
——sin—— ——sin——
P = Ny oy e~ Jkwcosg T2 2 et Jkwcos#
a mn n
cos(——)-1 cos (——)-1
ny ny
—%—sin—%— (e~ Jkwcoss ) —%—sin—%— (e*Jkwcoss
D, = 1 1 2 2

cos(—%:)-cos(%f) cos(—%;):cos(zﬂgzﬂ)

Adding over a common denominator, Db = fx/fa where

1 1 n.

- n-28 -jkwcoss
f - i o e |

+ —bsine)[cos () -con @] etkecoes

2 2 2
£ - rcos(—!—)—cos(gl)] I—cas(—ﬂ—‘—.:as(z"—z’)-|
2 l n, n, J l n, n,
but
f1 = fa =0 at # =n/2.
Therefore
f1 0 )1
Db = = = = and D,, is indeterminate at § = 3
f 0 w -
2

Using L'Hopital's Rule for indeterminate ratios,

df1 daf

Ei—¢=§=o f-{”
d::; ’=2 = (-j8ka) ( ;isin—:‘)( ;zsin :2)
d::: I = -8( ;tsin :x)( ;zsin :z)

So that
By o ey

(A-11)

(A-12)

(A-13)

LN
3>
[y
39

AT 4

(A-15)

(A-16)

(A-17)

(A-18)

The result then, for the diffracted fields from a flat surface at
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normal incidence, for the soft or hard polarization is

5 (s) E e jks [e-jn/c][n - ]
s =

s,h ’_: Ly ek a*%%

where

Da is given by (A-11)

Db is given by (A-18)

As long as the edge parameters are in the range 2 >n> %

143

(A-19)

, that is the

edge angles are 0°< WA < 270°, the parameters D, and D, will be

continuous everywhere and in particular near ¢ = g.
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APPENDIX B

QUADRUPLE INTEGRATION TECHNIQUE TO DETERMINE THE
PHYSICAL OPTICS DOUBLE REFLECTED FIELDS

If the theory of physical optics is used to determine the double
reflected field from a dihedral corner reflector, a quadruple
integration arises which must be evaluated numerically. This procedure
is more difficult and more costly to implement than the approximate
technique developed by Knott [18] but it yields more accurate results
when compared with experiment. This Appendix derives the quadruple
integral expression required to find the backscattered fields for the
vertically polarized case.

The dihedral geometry is shown in Fig. B-1 where A is the width
and B is the height of both dihedral plates. The interior angle of the
dihedral is 2« and the direction of the incidence field is #. Two

normal vectors ;s and n, are defined perpendicular to the reflecting

surfaces. The procedure to find the double reflected field components
which reflect first from Plate I and then from Plate II begins by using
the physical optics approximation of the induced currents on Plate I.
The reflected field can be found everywhere and in particular on the
surface of Plate II where a surface current density is induced. The
field radiated from Plate II is the desired double reflected field.

For the geometry shown in Fig. B-1, let the incident field be

Bl - ;z Eoejk(xcosi+ysinl) (B-1)
H - (;ycos!—;xsinl) H,eJK (xcos#+ysing) (B-2)
where Eo - nﬂo (B-3)

The unit normal vectors are
;s = ;xsinu + ;ycosa (B-4)
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\
Incidence
direction \

Fig. B-1. Double-reflected physical optics field using physical
optics theory for both the first and second reflections.



n, = axsinu - aycosa

On plate I: y = xtanx

On plate II: y = xtanx

The incident field at plate I is

di ~ -~
H |l = (aycosﬁ - a,s

ins) H eJk(x cosg-Xx tanc sing)
(1]

By the physical optics approximation

Js

~ -t
= 2n_ X Hi =

I s 1

= 2H0azsin(l+u)e

-~ -~ -i
2(axsina+ayc08a) X H

jkx(cos# - tanx sing)

-d
Then the vector poieniiail Al is
- u - oo oy e-ij '
A, =4 Jg(x',y',2") dA,
1 R
' _dx'dz’
where dAl = e O5C

Z = Mg sin(#+a) X
1 217 0 CosSx

B Acosx '
U oJkx' (
0

cos# - tanx sinx) e~ JKR

and R2=(x-x')%+(y+x'tanx)2+(z-z')2

The reflected field from plate I is

where

-t
K (x,y,z,x",y',2")=e

-~ OA, - gfz ]

a a
X oy Y ax

B Acosx
S -0 sin(s+ T
1 2n = cosx

0

jkx'(cos# - tanx sing)

dx'dz’

e

Kl (X-Y-z.x' .Y' 2! )dx’dz’

-JkR

R

b

(B-5)

(B-6)
(B-7)

(B-8)

(B-9)

(B-10)

(B-11)

(B-12)

(B-13)

(B-14)
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( i + jk )[;y[x;x'] + ;x[liﬁéiﬂﬂﬂﬂ] (B-15)

On Plate II, therefore, the current density is

~

- =S . n - s
Js = 2ns X Hx = 2[ax81nu - ayCOSaJ X Hl (B-16)
11 11 11
i B Acosa
_ - H_ sin(#+x) - .
= az_% COoSa ‘[0[ [axsina aVCOSoi X
0
L]
Kl(x,y.z.x‘,y'.z') dx'dz' (B-117)
4 _poO
B Jsz
-l -t
The vector potential A dne to current dencity I | ie
11 ’ s'll
- -t ‘ij [
= B e 1 _
All N J J Js(x'.y'.z') dAl' (B-18)
11 R
1
~ . _ X'cos(a-¢) -
where R1 =r C08 (B-19)
. ia | o dx'dz’ o o
and aAll ~coso (B-20)

The desired double reflected field, found using strictly the physical

optics approximation is
ds _ -l -
E ij”

E -
= |-3 =2 sinlgew) ] x (B-21)
2\ cos“a

B Acosa B Acosa K
" e ow o e | e IKT

Joj Jo[ K(x',z',x",z")dx"dz"dx " 'dz
0 0 r

where K(x',z’',x",z") = [ 3§% sina ][ i,+ jk ] b

[ jkxncozo‘:;' !][ jkxlcogogg;' !] e—JkR' (B"ZZ)
e e R’

and (R°)2 = (x'-x")2 + (x'+x")2tan®x + (z'-2")% (B-23)




