4,026 research outputs found

    Landscape phage, phage display, stripped phage, biosensors, detection, affinity reagent, nanotechnology, Salmonella typhimurium, Bacillus anthracis

    Full text link
    Filamentous phage, such as fd used in this study, are thread-shaped bacterial viruses. Their outer coat is a tube formed by thousands equal copies of the major coat protein pVIII. We constructed libraries of random peptides fused to all pVIII domains and selected phages that act as probes specific for a panel of test antigens and biological threat agents. Because the viral carrier is infective, phage borne bio-selective probes can be cloned individually and propagated indefinitely without needs of their chemical synthesis or reconstructing. We demonstrated the feasibility of using landscape phages and their stripped fusion proteins as new bioselective materials that combine unique characteristics of affinity reagents and self assembling membrane proteins. Biorecognition layers fabricated from phage-derived probes bind biological agents and generate detectable signals. The performance of phage-derived materials as biorecognition films was illustrated by detection of streptavidin-coated beads, Bacillus anthracis spores and Salmonella typhimurium cells. With further refinement, the phage-derived analytical platforms for detecting and monitoring of numerous threat agents may be developed, since the biodetector films may be obtained from landscape phages selected against any bacteria, virus or toxin. As elements of field-use detectors, they are superior to antibodies, since they are inexpensive, highly specific and strong binders, resistant to high temperatures and environmental stresses.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    On the moment dynamics of stochastically delayed linear control systems

    Get PDF
    In this article, the dynamics and stability of a linear system with stochastic delay and additive noise are investigated. It is assumed that the delay value is sampled periodically from a stationary distribution. A semi‐discretization technique is used to time‐discretize the system and derive the mean and second‐moment dynamics. These dynamics are used to obtain the stationary moments and the corresponding necessary and sufficient stability conditions. The application of the proposed method is illustrated through the analysis of the Hayes equation with stochastic delay and additive noise. The method is also applied to the control design of a connected automated vehicle. These examples illuminate the effects of stochastic delays on the robustness of dynamical systems

    Incommensurate magnetic fluctuations and Fermi surface topology in LiFeAs

    Full text link
    Using the angle-resolved photoemission spectroscopy (ARPES) data accumulated over the whole Brillouin zone (BZ) in LiFeAs we analyze the itinerant component of the dynamic spin susceptibility in this system in the normal and superconducting state. We identify the origin of the incommensurate magnetic inelastic neutron scattering (INS) intensity as scattering between the electron pockets, centered around the (π,π)(\pi,\pi) point of the BZ and the large two-dimensional hole pocket, centered around the Γ\Gamma-point of the BZ. As the magnitude of the superconducting gap within the large hole pocket is relatively small and angle dependent, we interpret the INS data in the superconducting state as a renormalization of the particle-hole continuum rather than a true spin exciton. Our comparison indicates that the INS data can be reasonably well described by both the sign changing symmetry of the superconducting gap between electron and hole pockets as well as sign preserving gap, depending on the assumptions made for the fermionic damping.Comment: 7 pages, 5 figure

    Derivation of the Rules of Quantum Mechanics from Information-Theoretic Axioms

    Full text link
    Conventional quantum mechanics with a complex Hilbert space and the Born Rule is derived from five axioms describing properties of probability distributions for the outcome of measurements. Axioms I,II,III are common to quantum mechanics and hidden variable theories. Axiom IV recognizes a phenomenon, first noted by Turing and von Neumann, in which the increase in entropy resulting from a measurement is reduced by a suitable intermediate measurement. This is shown to be impossible for local hidden variable theories. Axiom IV, together with the first three, almost suffice to deduce the conventional rules but allow some exotic, alternatives such as real or quaternionic quantum mechanics. Axiom V recognizes a property of the distribution of outcomes of random measurements on qubits which holds only in the complex Hilbert space model. It is then shown that the five axioms also imply the conventional rules for all dimensions.Comment: 20 pages, 6 figure

    Mechanism of spontaneous formation of stable magnetic structures on the Sun

    Full text link
    One of the puzzling features of solar magnetism is formation of long-living compact magnetic structures; such as sunspots and pores, in the highly turbulent upper layer of the solar convective zone. We use realistic radiative 3D MHD simulations to investigate the interaction between magnetic field and turbulent convection. In the simulations, a weak vertical uniform magnetic field is imposed in a region of fully developed granular convection; and the total magnetic flux through the top and bottom boundaries is kept constant. The simulation results reveal a process of spontaneous formation of stable magnetic structures, which may be a key to understanding of the magnetic self-organization on the Sun and formation of pores and sunspots. This process consists of two basic steps: 1) formation of small-scale filamentary magnetic structures associated with concentrations of vorticity and whirlpool-type motions, and 2) merging of these structures due to the vortex attraction, caused by converging downdrafts around magnetic concentration below the surface. In the resulting large-scale structure maintained by the converging plasma motions, the magnetic field strength reaches ~1.5 kG at the surface and ~6 kG in the interior; and the surface structure resembles solar pores. The magnetic structure remains stable for the whole simulation run of several hours with no sign of decay.Comment: 13 pages, 4 figures, submitted to the Astrophysical Journa

    Gain and time resolution of 45 μ\mum thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 101510^{15} neq_{eq}/cm2^2

    Full text link
    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μ\mum were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 101510^{15} neq_{eq}/cm2^2. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×10143\times10^{14} neq_{eq}/cm2^2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 101510^{15} neq_{eq}/cm2^2, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.Comment: 17 page

    Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots

    Full text link
    We examine the multiple exciton population dynamics in PbS quantum dots by ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We simultaneously probe the first three excitonic transitions over a broad spectral range. Transient spectra show the presence of first order bleach of absorption for the 1S_h-1S_e transition and second order bleach along with photoinduced absorption band for 1P_h-1P_e transition. We also report evidence of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures of carrier multiplication (multiexcitons for the single absorbed photon) from analysis of the first and second order bleaches, in the limit of low absorbed photon numbers (~ 10^-2), at pump energies from two to four times the semiconductor band gap. The multiexciton generation efficiency is discussed both in terms of a broadband global fit and the ratio between early- to long-time transient absorption signals.. Analysis of population dynamics shows that the bleach peak due to the biexciton population is red-shifted respect the single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure

    Prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated sewage sludges

    Full text link
    Treated sludge from wastewater treatment plants (WWTPs) is commonly used in agriculture as fertilizers and to amend soils. The most significant health hazard for sewage sludge relates to the wide range of pathogenic microorganisms such as protozoa parasites.The objective of this study was to collect quantitative data on Cryptosporidium oocysts and Giardia cysts in the treated sludge in wastewater treatment facilities in Spain. Sludge from five WWTPs with different stabilization processes has been analysed for the presence of Cryptosporidium and Giardia in the raw sludge and after the sludge treatment. A composting plant (CP) has also been assessed. After a sedimentation step, sludge samples were processed and (oo)cysts were isolated by immunomagnetic separation (IMS) and detected by immunofluorescence assay (IFA). Results obtained in this study showed that Cryptosporidium oocysts and Giardia cysts were present in 26 of the 30 samples (86.6%) of raw sludge samples. In treated sludge samples, (oo)cysts have been observed in all WWTP's analysed (25 samples) with different stabilization treatment (83.3%). Only in samples from the CP no (oo)cysts were detected. This study provides evidence that (oo)cysts are present in sewage sludge-end products from wastewater treatment processes with the negative consequences for public health.We appreciate the financial support provided by Entidad Publica Saneamiento Aguas (EPSAR).Amoros Muñoz, I.; Moreno Trigos, MY.; Reyes-Sosa, MB.; Moreno-Mesonero, L.; Alonso Molina, JL. (2016). Prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated sewage sludges. Environmental Technology. 37(22):2898-2904. doi:10.1080/09593330.2016.1168486S28982904372
    corecore