23 research outputs found

    Systems Integration and Operationalization

    Get PDF
    No abstract availabl

    The String Stability of a Trajectory-Based Interval Management Algorithm in the Midterm Airspace

    Get PDF
    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides terminal controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain a precise spacing interval behind a target aircraft. As the percentage of IM equipped aircraft increases, controllers may provide IM clearances to sequences, or strings, of IM-equipped aircraft. It is important for these strings to maintain stable performance. This paper describes an analytic analysis of the string stability of the latest version of NASA's IM algorithm and a fast-time simulation designed to characterize the string performance of the IM algorithm. The analytic analysis showed that the spacing algorithm has stable poles, indicating that a spacing error perturbation will be reduced as a function of string position. The fast-time simulation investigated IM operations at two airports using constraints associated with the midterm airspace, including limited information of the target aircraft's intended speed profile and limited information of the wind forecast on the target aircraft's route. The results of the fast-time simulation demonstrated that the performance of the spacing algorithm is acceptable for strings of moderate length; however, there is some degradation in IM performance as a function of string position

    UAS Concept of Operations and Vehicle Technologies Demonstration

    Get PDF
    In 2017 and 2018, under National Aeronautics and Space Administration (NASA) sponsorship, the New York Unmanned Aircraft Systems (UAS) Test Site and Northeast UAS Airspace Integration Research (NUAIR) Alliance conducted a year-long research project that culminated in a UAS technology flight demonstration. The research project included the creation of a concept of operations, and development and demonstration of UAS technologies. The concept of operations was focused on an unmanned aircraft transiting from cruise through Class E airspace into a high-density urban terminal environment. The terminal environment in which the test was conducted was Griffiss International Airport, under Syracuse Air Traffic Control (ATC) approach control and Griffiss control tower. Employing an Aurora Centaur optionally piloted aircraft (OPA), this project explored six scenarios aimed at advancing UAS integration into the National Airspace System (NAS) under both nominal and off-nominal conditions. Off-nominal conditions were defined to include complete loss of the communications link between the remote pilots control station on the ground and the aircraft. The off-nominal scenarios that were investigated included lost-link conditions with and without link recovery, an automated ATC initiated go-around, autonomous rerouting around a dynamic airspace obstruction (in this case simulated weather), and autonomous taxi operations to clear the runway

    Wind Information Uplink to Aircraft Performing Interval Management Operations

    Get PDF
    The accuracy of the wind information used to generate trajectories for aircraft performing Interval Management (IM) operations is critical to the success of an IM operation. There are two main forms of uncertainty in the wind information used by the Flight Deck Interval Management (FIM) equipment. The first is the accuracy of the forecast modeling done by the weather provider. The second is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment, resulting in loss of additional information. This study focuses on what subset of forecast data, such as the number and location of the points where the wind is sampled should be made available to uplink to the aircraft

    Space-Filling Designs for Multi-Layer Nested Factors

    Get PDF
    This articles considers computer experiments where levels for continuous factors are selected in sequential order with the level selected for one factor directly a ecting the range of possible levels for the nested factor, and so on for a nite number of factors. In addition, we assume the nested relationships between the factors have no closed form solution. In this paper, we propose an approach for constructing a multi-layer nested factor design, or multi-NFD for short. This space- lling design approach takes advan- tage of the maximin criterion and can be analyzed using a standard Gaussian process model. While the multi-NFD approach can be adapted for future computer experi- ments involving factor relationships of this type, we present results from a particular aerospace computer simulation study

    Participant Training for a Flight Test Evaluation of Interval Management

    Get PDF
    Interval Management is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. NASA, in cooperation with Boeing, Honeywell, and United Airlines, tested an avionics prototype onboard flight test aircraft. A critical need was identified to train the pilots participating in the flight test prior to the first flight. This paper documents the flight training regimen that successfully trained the pilots on the Interval Management concepts and flight crew procedures and suggests potential improvements to future training regimens for industry use

    Results from an Interval Management (IM) Flight Test and Its Potential Benefit to Air Traffic Management Operations

    Get PDF
    NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput

    An Analysis of the Speed Commands from an Interval Management Algorithm during the ATD-1 Flight Test

    Get PDF
    NASA's first Air Traffic Management Technology Demonstration (ATD-1) successfully completed a nineteen-day flight test under a NASA contract with Boeing, with Honeywell and United Airlines as sub-contractors. An Interval Management (IM) avionics prototype was built based on international IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. This paper describes the speed behavior of the IM avionics prototype, focusing on the speed command rate and the number of speed increases

    An Investigation of Interval Management Displays

    Get PDF
    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to transition the most mature ATM technologies from the laboratory to the National Airspace System. One selected technology is Interval Management (IM), which uses onboard aircraft automation to compute speeds that help the flight crew achieve and maintain precise spacing behind a preceding aircraft. Since ATD-1 focuses on a near-term environment, the ATD-1 flight demonstration prototype requires radio voice communication to issue an IM clearance. Retrofit IM displays will enable pilots to both enter information into the IM avionics and monitor IM operation. These displays could consist of an interface to enter data from an IM clearance and also an auxiliary display that presents critical information in the primary field-of-view. A human-in-the-loop experiment was conducted to examine usability and acceptability of retrofit IM displays, which flight crews found acceptable. Results also indicate the need for salient alerting when new speeds are generated and the desire to have a primary field of view display available that can display text and graphic trend indicators

    The Development of Cockpit Display and Alerting Concepts for Interval Management (IM) in a Near-Term Environment

    Get PDF
    The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) Interval Management (IM) research team has conducted a wide spectrum of work in the recent past, ranging from development and testing of the concept, procedures, and algorithm. This document focuses on the research and evaluation of the IM pilot interfaces, cockpit displays, indications, and alerting concepts for conducting IM spacing operations. The research team incorporated knowledge of human factors research, industry standards for cockpit design, and cockpit design philosophies to develop innovative displays for conducting these spacing operations. The research team also conducted a series of human-in-the-loop (HITL) experiments with commercial pilots and air traffic controllers, in as realistic a high-density arrival operation environment as could be simulated, to evaluate the spacing guidance display features and interface requirements needed to conduct spacing operations
    corecore