2,335 research outputs found

    Incorporating Hydraulic Structures in an Open-Channel Model

    Get PDF
    The open-channel flow model, BRANCH, is a routinely used numerical tool for modeling rivers, canals, and waterway networks. Although a simplified hydraulic structure representation is included in the model, no universal subroutine that can represent hydraulic structures by their rating curve equations has been included in the BRANCH model. Accordingly, a subroutine has been developed that specifies flow through a structure by a stage-discharge relation. The structure flow equation is used to generate coefficients in the solution matrix that represent the structure in the same computational format as the open-channel flow equations. Field applications have shown that this new subroutine properly represents the effects of hydraulic structures in the open-channel flow regime

    Vegetation Drought Response Index An Integration of Satellite, Climate, and Biophysical Data

    Get PDF
    Drought is a normal, recurring feature of climate in most parts of the world (Wilhite, 2000) that adversely affects vegetation conditions and can have significant impacts on agriculture, ecosystems, food security, human health, water resources, and the economy. For example, in the United States, 14 billion-dollar drought events occurred between 1980 and 2009 (NCDC, 2010), with a large proportion of the losses coming from the agricultural sector in the form of crop yield reductions and degraded hay/pasture conditions. During the 2002 drought, Hayes et al. (2004) found that many individual states across the United States experienced more than $1 billion in agriculture losses associated with both crops and livestock. The impact of drought on vegetation can have serious water resource implications as the use of finite surface and groundwater supplies to support agricultural crop production competes against other sectoral water interests (e.g., environmental, commercial, municipal, and recreation). Drought-related vegetation stress can also have various ecological impacts. Prime examples include widespread piñon pine tree die-off in the southwest United States due to protracted severe drought stress and associated bark beetle infestations (Breshears et al., 2005) and the geographic shift of a forest-woodland ecotone in this region in response to severe drought in the mid-1950s (Allen and Breshears, 1998). Tree mortality in response to extended drought periods has also been observed in other parts of the western United States (Guarin and Taylor, 2005), as well as in boreal (Kasischke and Turetsky, 2006), temperate (Fensham and Holman, 1999), and tropical (Williamson et al., 2000) forests. Droughts have also served as a catalyst for changes in wildfire activity (Swetnam and Betancourt, 1998; Westerling et al., 2006) and invasive plant species establishment (Everard et al., 2010)

    Toward a neuroscience of interactive parent–infant dyad empathy

    Get PDF
    In accord with social neuroscience's progression to include interactive experimental paradigms, parents' brains have been activated by emotionally charged infant stimuli - especially of their own infant - including baby cry and picture. More recent research includes the use of brief video clips and opportunities for maternal response. Among brain systems important to parenting are those involved in empathy. This research may inform recent studies of decreased societal empathy, offer mechanisms and solutions

    Parenting and Beyond: Common Neurocircuits Underlying Parental and Altruistic Caregiving

    Get PDF
    Interpersonal relationships constitute the foundation on which human society is based. The infant–caregiver bond is the earliest and most influential of these relationships. Driven by evolutionary pressure for survival, parents feel compelled to provide care to their biological offspring. However, compassion for non-kin is also ubiquitous in human societies, motivating individuals to suppress their own self-interests to promote the well-being of non-kin members of the society. We argue that the process of early kinship-selective parental care provides the foundation for non-exclusive altruism via the activation of a general Caregiving System that regulates compassion in any of its forms. We propose a tripartite structure of this system that includes (1) the perception of need in another, (2) a caring motivational or feeling state, and (3) the delivery of a helping response to the individual in need. Findings from human and animal research point to specific neurobiological mechanisms including activation of the insula and the secretion of oxytocin that support the adaptive functioning of this Caregiving System

    Probing potassium in the atmosphere of HD 80606b with tunable filter transit spectrophotometry from the Gran Telescopio Canarias

    Full text link
    We report observations of HD 80606 using the 10.4-m Gran Telescopio Canarias (GTC) and the OSIRIS tunable filter imager. We acquired very-high-precision, narrow-band photometry in four bandpasses around the K I absorption feature during the January 2010 transit of HD 80606b and during out-of-transit observations conducted in January and April of 2010. We obtained differential photometric precisions of \sim 2.08e-4 for the in-transit flux ratio measured at 769.91-nm, which probes the K I line core. We find no significant difference in the in-transit flux ratio between observations at 768.76 and 769.91 nm. Yet, we find a difference of \sim 8.09 \pm 2.88e-4 between these observations and observations at a longer wavelength that probes the K I wing (777.36 nm). While the presence of red noise in the transit data has a non-negligible effect on the uncertainties in the flux ratio, the 777.36-769.91 nm colour during transit shows no effects from red noise and also indicates a significant colour change, with a mean value of \sim 8.99\pm0.62e-4. This large change in the colour is equivalent to a \sim 4.2% change in the apparent planetary radius with wavelength, which is much larger than the atmospheric scale height. This implies the observations probed the atmosphere at very low pressures as well as a dramatic change in the pressure at which the slant optical depth reaches unity between \sim770 and 777 nm. We hypothesize that the excess absorption may be due to K I in a high-speed wind being driven from the exoplanet's exosphere. We discuss the viability of this and alternative interpretations, including stellar limb darkening, starspots, and effects from Earth's atmosphere. We strongly encourage follow-up observations of HD 80606b to confirm the signal measured here. Finally, we discuss the future prospects for exoplanet characterization using tunable filter spectrophotometry.Comment: Accepted to MNRAS; revised version includes some major updates; now 21 pages, with 14 figures and 9 table

    Toward New Therapeutics for Skin and Soft Tissue Infections: Propargyl-Linked Antifolates Are Potent Inhibitors of MRSA and Streptococcus pyogenes

    Get PDF
    Hospital- and community-acquired, complicated skin and soft tissue infections, often attributed to Staphylococcus aureus and Streptococcus pyogenes, present a significant health burden that is associated with increased health care costs and mortality. As these two species are difficult to discern on diagnosis and are associated with differential profiles of drug resistance, the development of an efficacious antibacterial agent that targets both organisms is a high priority. Herein we describe a structure-based drug development effort that has produced highly potent inhibitors of dihydrofolate reductase from both species. Optimized propargyl-linked antifolates containing a key pyridyl substituent display antibacterial activity against both methicillin-resistant S. aureus and S. pyogenes at MIC values below 0.1 µg/mL and minimal cytotoxicity against mammalian cells. Further evaluation against a panel of clinical isolates shows good efficacy against a range of important phenotypes such as hospital- and community-acquired strains as well as strains resistant to vancomycin

    Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis

    Get PDF
    Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore