23 research outputs found
UCT943, a next generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria
The 2-aminopyridine MMV048 was the first drug candidate inhibiting; Plasmodium; phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant; Plasmodium falciparum; and; Plasmodium vivax; clinical isolates. Excellent; in vitro; antiplasmodial activity translated into high efficacy in; Plasmodium berghei; and humanized; P. falciparum; NOD-; scid IL-2R; Îł; null; mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate; in vivo; intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation; Plasmodium; PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria
Scintillation Proximity Assay for Inhibitors of Escherichia coli MurG and, Optionally, MraY
MurG and MraY, essential enzymes involved in the synthesis of bacterial peptidoglycan, are difficult to assay because the substrates are lipidic and hard to prepare in large quantities. Based on the use of Escherichia coli membranes lacking PBP1b, we report a high-throughput method to measure the activity of MurG and, optionally, MraY as well. In these membranes, incubation with the two peptidoglycan sugar precursors results in accumulation of lipid II rather than the peptidoglycan produced by wild-type membranes. MurG was assayed by addition of UDP-[(3)H]N-acetylglucosamine to membranes in which lipid I was preformed by incubation with UDP-N-acetyl-muramylpentapeptide, and the product was captured by wheat germ agglutinin scintillation proximity assay beads. In a modification of the assay, the activity of MraY was coupled to that of MurG by addition of both sugar precursors together in a single step. This allows simultaneous detection of inhibitors of either enzyme. Both assays could be performed using wild-type membranes by addition of the transglycosylase inhibitor moenomycin. Nisin and vancomycin inhibited the MurG reaction; the MraY-MurG assay was inhibited by tunicamycin as well. Inhibitors of other enzymes of peptidoglycan synthesis—penicillin G, moenomycin, and bacitracin—had no effect. Surprisingly, however, the β-lactam cephalosporin C inhibited both the MurG and MraY-MurG assays, indicating a secondary mechanism by which this drug inhibits bacterial growth. In addition, it inhibited NADH dehydrogenase in membranes, a hitherto-unreported activity. These assays can be used to screen for novel antibacterial agents
Evaluation of the metabolism, bioactivation and pharmacokinetics of triaminopyrimidine analogs toward selection of a potential candidate for antimalarial therapy
<p>1. During the course of metabolic profiling of lead Compound <b>1</b>, glutathione (GSH) conjugates were detected in rat bile, suggesting the formation of reactive intermediate precursor(s). This was confirmed by the identification of GSH and <i>N</i>-acetylcysteine (NAC) conjugates in microsomal incubations.</p> <p>2. It was proposed that bioactivation of Compound <b>1</b> occurs via the formation of a di-iminoquinone reactive intermediate through the involvement of the C-2 and C-5 nitrogens of the pyrimidine core.</p> <p>3. To further investigate this hypothesis, structural analogs with modifications at the C-5 nitrogen were studied for metabolic activation in human liver microsomes supplemented with GSH/NAC.</p> <p>4. Compounds <b>1</b> and <b>2</b>, which bear secondary nitrogens at the C-5 of the pyrimidine core, were observed to form significant amounts of GSH/NAC-conjugates <i>in vitro</i>, whereas compounds with tertiary nitrogens at C-5 (Compound <b>3</b> and <b>4</b>) formed no such conjugates.</p> <p>5. These observations provide evidence that electron/hydrogen abstraction is required for the bioactivation of the triaminopyrimidines, potentially via a di-iminoquinone intermediate. The lack of a hydrogen and/or steric hindrance rendered Compound <b>3</b> and <b>4</b> incapable of forming thiol conjugates.</p> <p>6. This finding enabled advancement of compound <b>4</b>, with a desirable potency, safety and PK profile, as a lead candidate for further development in the treatment of malaria.</p
Left-Hand Side Exploration of Novel Bacterial Topoisomerase Inhibitors to Improve Selectivity against hERG Binding
Structure–activity
relationship (SAR) exploration on the
left-hand side (LHS) of a novel class of bacterial topoisomerase inhibitors led to a significant improvement
in the selectivity against hERG cardiac channel binding with concomitant
potent antimycobacterial activity. Bulky polar substituents at the
C-7 position of the naphthyridone ring did not disturb its positioning
between two base pairs of DNA. Further optimization of the polar substituents
on the LHS of the naphthyridone ring led to potent antimycobacterial
activity (Mtb MIC = 0.06 ÎĽM) against <i>Mycobacterium tuberculosis</i> (Mtb). Additionally, this knowledge provided a robust SAR understanding
to mitigate the hERG risk. This compound class inhibits Mtb DNA gyrase
and retains its antimycobacterial activity against moxifloxacin-resistant
strains of Mtb. Finally, we demonstrate <i>in vivo</i> proof
of concept in an acute mouse model of TB following oral administration
of compound <b>19</b>