354 research outputs found

    Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex

    Full text link
    In the eighties, Berends, Burgers and van Dam (BBvD) found a nonabelian cubic vertex for self-interacting massless fields of spin three in flat spacetime. However, they also found that this deformation is inconsistent at higher order for any multiplet of spin-three fields. For arbitrary symmetric gauge fields, we severely constrain the possible nonabelian deformations of the gauge algebra and, using these results, prove that the BBvD obstruction cannot be cured by any means, even by introducing fields of spin higher (or lower) than three.Comment: 19 pages, no figur

    An action principle for Vasiliev's four-dimensional higher-spin gravity

    Full text link
    We provide Vasiliev's fully nonlinear equations of motion for bosonic gauge fields in four spacetime dimensions with an action principle. We first extend Vasiliev's original system with differential forms in degrees higher than one. We then derive the resulting duality-extended equations of motion from a variational principle based on a generalized Hamiltonian sigma-model action. The generalized Hamiltonian contains two types of interaction freedoms: One set of functions that appears in the Q-structure of the generalized curvatures of the odd forms in the duality-extended system; and another set depending on the Lagrange multipliers, encoding a generalized Poisson structure, i.e. a set of polyvector fields of ranks two or higher in target space. We find that at least one of the two sets of interaction-freedom functions must be linear in order to ensure gauge invariance. We discuss consistent truncations to the minimal Type A and B models (with only even spins), spectral flows on-shell and provide boundary conditions on fields and gauge parameters that are compatible with the variational principle and that make the duality-extended system equivalent, on shell, to Vasiliev's original system.Comment: 37 pages. References added, corrected typo

    Supersymmetric Higher Spin Theories

    Full text link
    We revisit the higher spin extensions of the anti de Sitter algebra in four dimensions that incorporate internal symmetries and admit representations that contain fermions, classified long ago by Konstein and Vasiliev. We construct the dS4dS_4, Euclidean and Kleinian version of these algebras, as well as the corresponding fully nonlinear Vasiliev type higher spin theories, in which the reality conditions we impose on the master fields play a crucial role. The N=2{\cal N}=2 supersymmetric higher spin theory in dS4dS_4, on which we elaborate further, is included in this class of models. A subset of Konstein-Vasiliev algebras are the higher spin extensions of the AdS4AdS_4 superalgebras osp(4N)osp(4|{\cal N}) for N=1,2,4{\cal N}=1,2,4 mod 4 and can be realized using fermionic oscillators. We tensor the higher superalgebras of the latter kind with appropriate internal symmetry groups and show that the N=3{\cal N}=3 mod 4 higher spin algebras are isomorphic to those with N=4{\cal N}=4 mod 4. We describe the fully nonlinear higher spin theories based on these algebras as well, and we elaborate further on the N=6{\cal N}=6 supersymmetric theory, providing two equivalent descriptions one of which exhibits manifestly its relation to the N=8{\cal N}=8 supersymmetric higher spin theory.Comment: 30 pages. Contribution to J. Phys. A special volume on "Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasilie

    The minimal conformal O(N) vector sigma model at d=3

    Full text link
    For the minimal O(N) sigma model, which is defined to be generated by the O(N) scalar auxiliary field alone, all n-point functions, till order 1/N included, can be expressed by elementary functions without logarithms. Consequently, the conformal composite fields of m auxiliary fields possess at the same order such dimensions, which are m times the dimension of the auxiliary field plus the order of differentiation.Comment: 15 page

    On gravitational interactions for massive higher spins in AdS3AdS_3

    Full text link
    In this paper we investigate gravitational interactions of massive higher spin fields in three dimensional AdSAdS space with arbitrary value of cosmological constant including flat Minkowski space. We use frame-like gauge description for such massive fields adopted to three-dimensional case. At first, we carefully analyze the procedure of switching on gravitational interactions in the linear approximation on the example of massive spin-3 field and then proceed with the generalization to the case of arbitrary integer spin field. As a result we construct a cubic interaction vertex linear in spin-2 field and quadratic in higher spin field on AdS3AdS_3 background. As in the massless case the vertex does not contain any higher derivative corrections to the Lagrangian and/or gauge transformations. Thus, even after switching on gravitational interactions, one can freely consider any massless or partially massless limits as well as the flat one.Comment: 21 pages. Some clarifications and 1 new reference added. Version to appear in the J.Phys.A special volume on "Higher Spin Theories and AdS/CFT" edited by Matthias Gaberdiel and Mikhail Vasilie

    A minimal BV action for Vasiliev's four-dimensional higher spin gravity

    Get PDF
    The action principle for Vasiliev's four-dimensional higher-spin gravity proposed recently by two of the authors, is converted into a minimal BV master action using the AKSZ procedure, which amounts to replacing the classical differential forms by vectorial superfields of fixed total degree given by the sum of form degree and ghost number. The nilpotency of the BRST operator is achieved by imposing boundary conditions and choosing appropriate gauge transitions between charts leading to a globally-defined formulation based on a principal bundle.Comment: 39 pages, 1 figure. Additional comments in the conclusion

    Gauge fields and infinite chains of dualities

    Get PDF
    We show that the particle states of Maxwell's theory, in DD dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E11. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincar\'e group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.Comment: 37 page

    Invariant Differential Operators and Characters of the AdS_4 Algebra

    Full text link
    The aim of this paper is to apply systematically to AdS_4 some modern tools in the representation theory of Lie algebras which are easily generalised to the supersymmetric and quantum group settings and necessary for applications to string theory and integrable models. Here we introduce the necessary representations of the AdS_4 algebra and group. We give explicitly all singular (null) vectors of the reducible AdS_4 Verma modules. These are used to obtain the AdS_4 invariant differential operators. Using this we display a new structure - a diagram involving four partially equivalent reducible representations one of which contains all finite-dimensional irreps of the AdS_4 algebra. We study in more detail the cases involving UIRs, in particular, the Di and the Rac singletons, and the massless UIRs. In the massless case we discover the structure of sets of 2s_0-1 conserved currents for each spin s_0 UIR, s_0=1,3/2,... All massless cases are contained in a one-parameter subfamily of the quartet diagrams mentioned above, the parameter being the spin s_0. Further we give the classification of the so(5,C) irreps presented in a diagramatic way which makes easy the derivation of all character formulae. The paper concludes with a speculation on the possible applications of the character formulae to integrable models.Comment: 30 pages, 4 figures, TEX-harvmac with input files: amssym.def, amssym.tex, epsf.tex; version 2 1 reference added; v3: minor corrections; v.4: minor corrections, v.5: minor corrections to conform with version in J. Phys. A: Math. Gen; v.6.: small correction and addition in subsections 4.1 & 4.

    Deformation independent open brane metrics and generalized theta parameters

    Get PDF
    We investigate the consequences of generalizing certain well established properties of the open string metric to the conjectured open membrane and open Dp-brane metrics. By imposing deformation independence on these metrics their functional dependence on the background fields can be determined including the notorious conformal factor. In analogy with the non-commutativity parameter Θμν\Theta^{\mu\nu} in the string case, we also obtain `generalized' theta parameters which are rank q+1 antisymmetric tensors (polyvectors) for open Dq-branes and rank 3 for the open membrane case. The expressions we obtain for the open membrane quantities are expected to be valid for general background field configurations, while the open D-brane quantities are only valid for one parameter deformations. By reducing the open membrane data to five dimensions, we show that they, modulo a subtlety with implications for the relation between OM-theory and NCYM, correctly generate the open string and open D2-data.Comment: 24 pages, LaTe

    Iron Age and Anglo-Saxon genomes from East England reveal British migration history

    Get PDF
    British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain
    corecore