189 research outputs found
Mortality after infection with methicillin-resistant Staphylococcus aureus (MRSA) diagnosed in the community
<p>Abstract</p> <p>Background</p> <p>Outbreak reports suggest that community-acquired methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infections can be life-threatening. We conducted a population based cohort study to assess the magnitude of mortality associated with MRSA infections diagnosed in the community.</p> <p>Methods</p> <p>We used the United Kingdom's General Practice Research Database (GPRD) to form a cohort of all patients with MRSA diagnosed in the community from 2001 through 2004 and up to ten patients without an MRSA diagnosis. The latter were frequency-matched with the MRSA patients on age, GPRD practice and diagnosis date. All patients were older than 18 years, had no hospitalization in the 2 years prior to cohort entry and medical history information of at least 2 years prior to cohort entry. The cohort was followed up for 1 year and all deaths and hospitalizations were identified. Hazard ratios of all-cause mortality were estimated using the Cox proportional hazards model adjusted for patient characteristics.</p> <p>Results</p> <p>The cohort included 1439 patients diagnosed with MRSA and 14,090 patients with no MRSA diagnosis. Mean age at cohort entry was 70 years in both groups, while co-morbid conditions were more prevalent in the patients with MRSA. Within 1 year, 21.8% of MRSA patients died as compared with 5.0% of non-MRSA patients. The risk of death was increased in patients diagnosed with MRSA in the community (adjusted hazard ratio 4.1; 95% confidence interval: 3.5–4.7).</p> <p>Conclusion</p> <p>MRSA infections diagnosed in the community are associated with significant mortality in the year after diagnosis.</p
Inhaled drugs to reduce exacerbations in patients with chronic obstructive pulmonary disease: a network meta-analysis
BACKGROUND: Most patients with chronic obstructive pulmonary disease (COPD) receive inhaled long-acting bronchodilators and inhaled corticosteroids. Conventional meta-analyses established that these drugs reduce COPD exacerbations when separately compared with placebo. However, there are relatively few head-to-head comparisons and conventional meta-analyses focus on single comparisons rather than on a simultaneous analysis of competing drug regimens that would allow rank ordering of their effectiveness. Therefore we assessed, using a networkmeta analytic technique, the relative effectiveness of the common inhaled drug regimes used to reduce exacerbations in patients with COPD. METHODS: We conducted a systematic review and searched existing systematic reviews and electronic databases for randomized trials of >=4 weeks' duration that assessed the effectiveness of inhaled drug regimes on exacerbations in patients with stable COPD. We extracted participants and intervention characteristics from included trials and assessed their methodological quality. For each treatment group we registered the proportion of patients with >=1 exacerbation during follow-up. We used treatment-arm based logistic regression analysis to estimate the absolute and relative effects of inhaled drug treatments while preserving randomization within trials. RESULTS: We identified 35 trials enrolling 26,786 patients with COPD of whom 27% had >=1 exacerbation. All regimes reduced exacerbations statistically significantly compared with placebo (odds ratios ranging from 0.71 (95%confidence interval [CI] 0.64 to 0.80) for long-acting anticholinergics to 0.78 (95% CI 0.70 to 0.86) for inhaled corticosteroids). Compared with long-acting bronchodilators alone, combined treatment was not more effective (comparison with long-acting beta-agonists: odds ratio 0.93 [95% CI 0.84 to 1.04] and comparison with long-acting anticholinergics: odds ratio 1.02 [95% CI 0.90 to 1.16], respectively). If FEV1 was 40% predicted. This effect modification was significant for inhaled corticosteroids (P=0.02 for interaction) and combination treatment (P=0.01) but not for long-acting anticholinergics (P=0.46). A limitation of this analysis is its exclusive focus on exacerbations and lack of FEV1 data for individual patients. CONCLUSIONS: We found no evidence that one single inhaled drug regimen is more effective than another in reducing exacerbations. Inhaled corticosteroids when added to long-acting beta-agonists reduce exacerbations only in patients with COPD with FEV1<=40%
Determinants of initial inhaled corticosteroid use in patients with GOLD A/B COPD:a retrospective study of UK general practice
Initial use of inhaled corticosteroid therapy is common in patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) A or B chronic obstructive pulmonary disease, contrary to GOLD guidelines. We investigated UK prescribing of inhaled corticosteroid therapy in these patients, to identify predictors of inhaled corticosteroid use in newly diagnosed chronic obstructive pulmonary disease patients. A cohort of newly diagnosed GOLD A/B chronic obstructive pulmonary disease patients was identified from the UK Clinical Practice Research Datalink (June 2005–June 2015). Patients were classified by prescribed treatment, with those receiving inhaled corticosteroid-containing therapy compared with those receiving long-acting bronchodilators without inhaled corticosteroid. In all, 29,815 patients with spirometry-confirmed chronic obstructive pulmonary disease were identified. Of those prescribed maintenance therapy within 3 months of diagnosis, 63% were prescribed inhaled corticosteroid-containing therapy vs. 37% prescribed non-inhaled corticosteroid therapy. FEV1% predicted, concurrent asthma diagnosis, region, and moderate exacerbation were the strongest predictors of inhaled corticosteroid use in the overall cohort. When concurrent asthma patients were excluded, all other co-variates remained significant predictors. Other significant predictors included general practitioner practice, younger age, and co-prescription with short-acting bronchodilators. Trends over time showed that initial inhaled corticosteroid prescriptions reduced throughout the study, but still accounted for 47% of initial prescriptions in 2015. These results suggest that inhaled corticosteroid prescribing in GOLD A/B patients is common, with significant regional variation that is independent of FEV1% predicted
Metabolic Effects Associated with ICS in Patients with COPD and Comorbid Type 2 Diabetes: A Historical Matched Cohort Study
Background Management guidelines for chronic obstructive pulmonary disease (COPD) recommend that inhaled corticosteroids (ICS) are prescribed to patients with the most severe symptoms. However, these guidelines have not been widely implemented by physicians, leading to widespread use of ICS in patients with mild-to-moderate COPD. Of particular concern is the potential risk of worsening diabetic control associated with ICS use. Here we investigate whether ICS therapy in patients with COPD and comorbid type 2 diabetes mellitus (T2DM) has a negative impact on diabetic control, and whether these negative effects are dose-dependent. Methods and Findings This was a historical matched cohort study utilising primary care medical record data from two large UK databases. We selected patients aged >= 40 years with COPD and T2DM, prescribed ICS (n = 1360) or non-ICS therapy (n = 2642) between 2008 and 2012. The primary endpoint was change in HbA(1c) between the baseline and outcome periods. After 1:1 matching, each cohort consisted of 682 patients. Over the 12-18-month outcome period, patients prescribed ICS had significantly greater increases in HbA1c values compared with those prescribed non-ICS therapies; adjusted difference 0.16% (95% confidence interval [Cl]: 0.05-0.27%) in all COPD patients, and 0.25% (95% Cl: 0.10-0.40%) in mild-to-moderate COPD patients. Patients in the ICS cohort also had significantly more diabetes-related general practice visits per year and received more frequent glucose strip prescriptions, compared with those prescribed non-ICS therapies. Patients prescribed higher cumulative doses of ICS (> 250 mg) had greater odds of increased HbA(1c) and/or receiving additional antidiabetic medication, and increased odds of being above the Quality and Outcomes Framework (QOF) target for HbA1c levels, compared with those prescribed lower cumulative doses ( Conclusion For patients with COPD and comorbid T2DM, ICS therapy may have a negative impact on diabetes control. Patients prescribed higher cumulative doses of ICS may be at greater risk of diabetes progression
The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins.
BACKGROUND: Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform\u27s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1.
METHODOLOGY/PRINCIPAL FINDINGS: Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis.
CONCLUSIONS/SIGNIFICANCE: Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However, prohibiting phosphorylation of candidate 14-3-3-binding sites does not impact localization of the fusogen. Hypodermal membrane fusion activity persists when 14-3-3 expression levels are reduced
Outcome measures in chronic obstructive pulmonary disease (COPD): strengths and limitations
Current methods for assessing clinical outcomes in COPD mainly rely on physiological tests combined with the use of questionnaires. The present review considers commonly used outcome measures such as lung function, health status, exercise capacity and physical activity, dyspnoea, exacerbations, the multi-dimensional BODE score, and mortality. Based on current published data, we provide a concise overview of the principles, strengths and weaknesses, and discuss open questions related to each methodology. Reviewed is the current set of markers for measuring clinically relevant outcomes with particular emphasis on their limitations and opportunities that should be recognized when assessing and interpreting their use in clinical trials of COPD
Impact of the Mitochondrial Genetic Background in Complex III Deficiency
BACKGROUND: In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G) in the cytochrome b (MT-CYB) gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities. METHODOLOGY: Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis. PRINCIPAL FINDINGS: Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient's skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband's mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background. CONCLUSIONS: Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders
Action Plan to enhance self-management and early detection of exacerbations in COPD patients; a multicenter RCT
<p>Abstract</p> <p>Background</p> <p>Early detection of exacerbations by COPD patients initiating prompt interventions has shown to be clinically relevant. Until now, research failed to identify the effectiveness of a written individualized Action Plan (AP) to achieve this.</p> <p>Methods/Design</p> <p>The current multicenter, single-blind RCT with a follow-up period of 6 months, evaluates the hypothesis that individualized AP's reduce exacerbation recovery time. Patients are included from regular respiratory nurse clinics and allocated to either usual care or the AP intervention. The AP provides individualized treatment prescriptions (pharmaceutical and non-pharmaceutical) related to a color coded symptom status (reinforcement at 1 and 4 months). Although usually not possible in self-management trials, we ensured blinding of patients, using a modified informed consent procedure in which patients give consent to postponed information. Exacerbations in both study arms are defined using the Anthonisen symptom diary-card algorithm. The Clinical COPD Questionnaire (CCQ) is assessed every 3-days. CCQ-recovery time of an exacerbation is the primary study outcome. Additionally, healthcare utilization, anxiety, depression, treatment delay, and self-efficacy are assessed at baseline and 6 months. We aim at including 245 COPD patients from 7 hospitals and 5 general practices to capture the a-priori sample size of at least 73 exacerbations per study arm.</p> <p>Discussion</p> <p>This RCT identifies if an AP is an effective component of self-management in patients with COPD and clearly differentiates from existing studies in its design, outcome measures and generalizability of the results considering that the study is carried out in multiple sites including general practices.</p> <p>Trial Registration</p> <p>NCT00879281</p
- …