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RESEARCH ARTICLE
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Abstract

Background

Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the

fundamental requirement for fused cells in eukaryotic development. Only two cellular fuso-

gens that are not of clear recent viral origin have been identified to date, both in nematodes.

One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregu-
lated EFF-1 expression causes lethality due to ectopic fusion between cells not develop-

mentally programmed to fuse, highlighting the necessity of tight fusogen regulation for

proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could

lead to discovery of molecular mechanisms that control cell fusion upstream of the action of

a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform’s predicted cytoplasmic

domain (endodomain) previously revealed two motifs that have high probabilities of interact-

ing with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites

within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo.
Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the

two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or

fusion-inducing activity of EFF-1.

Methodology/Principal Findings

Timing of fusion events was slightly but significantly delayed in animals unable to produce

full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in puta-

tive 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane

contact between fusion partner cells. Moreover, although the EFF-1A endodomain was

required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2

and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis.
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Conclusions/Significance

Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions

in vivo. However, prohibiting phosphorylation of candidate 14-3-3-binding sites does not

impact localization of the fusogen. Hypodermal membrane fusion activity persists when 14-

3-3 expression levels are reduced.

Introduction
Intercellular fusion is a crucial biological process in the development of many organisms. In
humans, it allows for fertilization and the functional development of muscle, bone, placental
tissue, and the lens of the eye [1–8]. Ongoing stem cell, regenerative, and cancer research impli-
cates cell fusion events in natural and experimental cellular reprogramming events, as well as
in the progression of cancer cells towards malignancy [9–18]. Other examples of cell fusion are
seen in the biology of organisms important to crop agriculture, food processing, and infectious
disease [5,7,19–25].

Despite its prevalence and significance, understanding the molecular, biochemical, and bio-
physical mechanisms of developmental cell fusions is in its infancy [3,5,7,26]. The molecular
mechanisms of virus-cell membrane fusion and intracellular membrane fusion are much better
understood than cell-cell fusion [26–29], and that knowledge has already yielded crucial medi-
cines that work via direct modulation of fusogenic reactions during infection [30–32]. Detailed
understanding of the mechanism of cell-cell fusion in animals could be crucial for the develop-
ment of many possible technologies and therapies, including tissue engineering and regenera-
tion, cancer immunotherapy, and design of therapies for fusion abnormalities affecting muscle,
bone, and reproduction [3].

The nematode Caenorhabditis elegans (C. elegans) is an ideal organism in which to study
cell fusion because of its nearly invariant sequence of embryonic and postembryonic fusion
events, wherein over one-third of somatic cells fuse to develop multiple syncytial cells in major
tissues such as the vulva, pharynx and hypodermis (epidermis) [33–35]. Until recent years, no
molecule was known to act as an intercellular fusion protein during the developmentally pro-
grammed formation of these multinucleated tissues. It is now known that two paralogous “FF”
proteins found in C. elegans, EFF-1 and AFF-1 (epithelial-fusion-failure and anchor cell-
fusion-failure), are necessary and sufficient to fuse complementary sets of neighboring cells
into multinucleated structures [36–42].

Significantly, EFF-1::GFP (which has detectable, but only partial, Eff rescuing activity)
becomes concentrated at the borders of fusion-fated cells in the developing embryonic hypoder-
mis immediately before fusion occurs [38]. Discrete localization to fusion competent cell-cell
borders has also been observed in SF9 and S2R+ insect cells, which fuse when induced to express
nematode EFF-1 [41,43]. While polarization and localization of cellular fusogens is important
for the proper patterning of tissues, the molecular mechanism behind this tightly regulated
selection remains unknown. The importance of such control, however, has been demonstrated
in vivo, as unregulated expression of EFF-1 or AFF-1 leads to a lethal phenotype, in which pro-
miscuous and destructive cell-cell fusion occurs throughout and between tissues [37,38,40].

Many questions remain unanswered regarding how EFF-1 is regulated. How is EFF-1 sig-
naled to specifically localize to the membrane border between fusion-fated cells prior to
fusions? What constrains EFF-1 from accumulating at the membrane contact with a cell neigh-
bor that is not a fusion partner? Once localized to the membrane interface, how is EFF-1
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triggered to actuate the fusion between membrane bilayers? Identifying factors that interact
with EFF-1 to control its activity and localization patterns will contribute to a better under-
standing of the general mechanism of cell fusion mediated by FF proteins, and fusogens to be
discovered in other systems.

Sequence analysis of FF proteins shows FF members in other nematode species in addition to
a small number of arthropods and a ctenophore, chordate, and protist [27,40,42,44]. Recent data
shows structural homology between EFF-1’s ectodomain and class II viral fusion proteins; how-
ever, the mechanism by which EFF-1 fuses membranes is different from class II viral fusogen
mechanisms [45,46]. Therefore, we focused our studies on the FF protein domains’ structure and
function. EFF-1 has four alternatively spliced isoforms, of which only two, EFF-1A and EFF-1B,
have a transmembrane anchor. EFF-1A and EFF-1B share similar extracellular and transmem-
brane domains; however, EFF-1B’s C-terminal cytoplasmic domain is shorter than EFF-1A’s and
varies greatly in its sequence [36]. Three lines of evidence indicate that EFF-1A functions more
potently as a developmental fusogen than does EFF-1B, and that much of this increased potency
in encoded in the EFF-1A C-terminus. First, EFF-1A cDNA rescues eff-1(oj55)mutant defects in
C. elegans, while EFF-1B cannot rescue these mutants [38]. Second, Podbilewicz et al. showed
that both EFF-1A and EFF-1B localize to the cell surface and fuse transfected SF9 insect cells in
culture [41]. However, a large amount of EFF-1B cDNA, five times higher than that used for
EFF-1A, was required in order to achieve similar cell surface expression levels and multinuclea-
tion. These results suggest that much more EFF-1B mRNAmust be translated for an equivalent
concentration of fusogen to be activated and function at the plasma membrane. Third, Sapir
et al. reported that replacing AFF-1’s native transmembrane domain and C-terminal cytoplasmic
domain with those of EFF-1A increased cell surface expression and multinucleation in SF9 cells
[40]. These results all support the hypothesis that EFF-1’s cytoplasmic domain has a functional
role in contributing to efficient and potent cell fusions, possibly by increasing surface expression,
maintaining EFF-1 membrane stability, or triggering EFF-1 to actuate fusion. Interestingly, cyto-
solic C-terminal truncation of some viral fusogens greatly reduces or eliminates fusogenic activ-
ity, and cell surface expression [47–50]. Thus, intracellular sequences appear to be important to
the function of a broad range of unrelated fusogenic proteins.

We previously used a web-based application, Minimotif Miner (MnM 1.0), to search within
EFF-1’s cytoplasmic domain for instances of short peptide motifs (<15 residues) of known
function [51–53]. This analysis revealed two candidate 14-3-3-binding motifs as the highest
scoring potentially functional sites. 14-3-3 proteins are highly conserved, eukaryotic proteins
that bind phosphorylated motifs within a broad spectrum of interacting target proteins [54–57].

Many of the known actions of 14-3-3 family members upon their binding partners corre-
spond to notable aspects of EFF-1 function in vivo. 14-3-3 proteins are often referred to as “scaf-
folds” that bring proteins into proximity with each other by virtue of their rigidity and
propensity to form dimers [55,58]. Multiple studies have demonstrated a role for 14-3-3s in
asymmetrically restricting cell polarity determinants in C. elegans zygotes, mammalian epithelia,
andDrosophila oocytes and epithelial cells [59–63]. Evidence also implicates 14-3-3 proteins in
facilitating forward transport of plasma membrane proteins through the secretory pathway
[56,64,65]. 14-3-3 proteins have been shown to mask membrane protein translocation signals,
such that release from 14-3-3-binding enhances membrane protein expression. Conversely, 14-
3-3 binding to a cell surface protein could mask ER retention signals, thereby releasing the pro-
tein from the ER. 14-3-3 dimers are also modeled to initiate transport from the ER through the
secretory pathway by simultaneously binding both to a membrane-bound protein and either to
forward transport accessory protein complexes or to proteins that inactivate ER retention
machinery. Based on these various models of action by 14-3-3s, we hypothesized that 14-3-3s
could regulate EFF-1 delivery, accumulation, or activation at the fusion-fated cell surface.

EFF-1 Cytoplasmic Domain and Cell-Cell Fusion
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Subsequent experiments suggested that 14-3-3 proteins might be required for timely embry-
onic hypodermal cell fusions in C. elegans. First, mutation of the candidate 14-3-3-binding
motifs in EFF-1A caused loss of the Eff-phenotype-rescuing activity of an eff-1 transgene tested
in vivo. Second, human 14-3-3η bound to EFF-1A::GFP when both proteins were co-expressed
in mammalian cells [51]. Based on these findings, we hypothesized that 14-3-3 proteins specifi-
cally regulate EFF-1-mediated cell fusion events in vivo, perhaps by governing EFF-1’s translo-
cation from internal organelles to the cell surface, by anchoring and/or clustering EFF-1A at
the plasma membrane border programmed to fuse, or by effecting an activating change in the
conformation of EFF-1A that drives membrane fusion. EFF-1’s ectodomain shows structural
homology to class II viral fusion proteins and a unique cell-cell fusion mechanism from class II
viral fusogens for which the trigger of EFF-1 mediated cell fusion is still unknown [45,46].
Intracellular factors, such as 14-3-3, that are predicted to bind to EFF-1’s cytoplasmic domain
could act as the “trigger” for fusion initiation.

In this paper, we further investigate the role of the only known C. elegans 14-3-3 proteins,
PAR-5 and FTT-2 [66], in controlling EFF-1’s spatiotemporal function and localization. We
confirm, through analysis of endogenous mutations, that the C-terminal tail of EFF-1A is
required for the precise timing of cell fusions in the embryo. However, we find that normal
expression of 14-3-3 proteins is not essential for EFF-1-induced hypodermal cell fusions. Fur-
thermore, the candidate 14-3-3-binding sites within EFF-1A are not required for timely locali-
zation of EFF-1A::GFP to fusion-competent hypodermal cell contacts. These new results
combine with previously published findings to indicate that potentiation of EFF-1 function
and localization in the hypodermis by these putative C-terminal phospho-motifs does not
require interaction with normal levels of 14-3-3 proteins. However, fusion activity is noticeably
enhanced by presence of the EFF-1A C-terminal cytoplasmic tail.

Materials and Methods

Strains
Unless otherwise indicated, all C. elegans strains were cultured according to standard tech-
niques [67] at 20°C on Nematode Growth Media (NGM) agar plates supplemented with
200 μg/ml streptomycin sulfate and a streptomycin-resistant strain of Escherichia coli (E. coli),
OP50-1 (Caenorhabditis Genetics Center, St. Paul, MN).

SU93 (jcIsI [AJM-1::GFP, rol6(su1006), unc29(+)] IV): A kind gift from Jeff Simske [68,69].
FC57 (eff-1(zz1) mIs12 II): This strain was isolated in a forward genetic non-complementa-

tion screen for new eff-1 alleles. Strain CB5584 (mIs12[myo-2::GFP, pes-10::GFP, gut::GFP] II)
has a pharynx-specific GFP transgene integrated within ~1cM of eff-1 on Chromosome II.
CB5584 males were mutagenized with EMS as described in [67]. Mutated males were crossed
with FC60 (eff-1(oj55) II; unc-119 (e2498) III; jcIsI[AJM-1::GFP, rol6(su1006), unc29(+)] IV)
hermaphrodites and the subsequent F1 generation was screened for transheterozygote progeny
(new allele/oj55) with Eff mutant phenotypes. Worms were made homozygous by selecting for
themIs12marker and backcrossed three times to N2 (Bristol) [38].

FC70 (eff-1(zz7) II; jcIs1 IV): FC70 was generated in the same fashion as FC57, by isolation
of alleles from a non-complementation screen over eff-1(oj55). All other eff-1 alleles used here
were reported in [36,38].

FC75 (eff-1(zz10) II; jcIs1 IV): FC75 was generated in the same fashion as FC57. This allele
generates a null mutation (W7stop).

FC80 (eff-1(zz1) mls12 II; jcIs1 IV): FC57 (eff-1(zz1) mIs12 II) was crossed to SU93 (jcIs1
IV), and progeny homozygous for both fluorescence reporters were isolated.

FC183: (zzIs22[pJdC41(EFF-1::GFP), pRF4(rol-6(su1006))]) [38]

EFF-1 Cytoplasmic Domain and Cell-Cell Fusion
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FC254 (unc-119 (e2498) III; zzEx98[EFF-1(S632/634/654A)::GFP, unc-119(+)]): Site-
directed mutagenesis (QuikChange II XL Kit, Stratagene) in EFF-1::GFP (pJdC41) was used to
mutate three predicted phosphorylatable serine residues in both 14-3-3-consensus sites to ala-
nines. Mutations were introduced in two consecutive steps. First, primers were designed to
mutate S654 to S654A in pJdC41 (Forward primer: 5’GCGGCACTATAGCGCTAGCCAGTA
CATTCCGCGG, Reverse primer: 5’CCGCGGAATGTACTGGCTAGCGCTATAGTGCCGC). The
resulting construct, EFF-1(S654A)::GFP (pJHS16), was used as a template to create EFF-1
(S632/634/654A)::GFP (pJHS18) by mutating the remaining serines to alanine, S632/634A
(Forward primer: 5’GGTGCAAGAGCTAGTGCCGAGCCCCACG, Reverse primer:
5’CGTGGGGCTCGGCACTAGCTCTTGCACC). By traditional C. elegansmicroinjection tech-
niques, pJHS18 was co-injected with an unc-119(+) rescuing transgene (pDPmm016, a kind
gift from Jeffrey Simske) into a severely paralyzed Unc strain, CB4845 (unc-119 (e2498) III,
obtained from David Pilgram). Transgenic worms were maintained by identifying non-Unc
worms that expressed EFF-1(S632/634/654A)::GFP.

HC396 (unc-119 (e2498) III; qtIs19[elt-3p::yfp, unc-119+]: Expresses a cytoplasmic fluores-
cent protein reporter in a subset of hypodermal precursor cells in the developing embryo (a
kind gift from Craig Hunter, [70].)

FC275 (ftt-2 (n4426Δ) X; unc-119 (e2498) III; qtIs19[elt-3p::yfp, unc-119+]): A C. elegans
strain that contains a null allele of ftt-2, MT14355 (ftt-2 (n4426Δ) X), was generously provided
by Robert Horvitz’s lab. This deletion allele removes the ftt-2 promoter and start codon.
MT14355 is characterized by a “bagging” phenotype in which embryos are retained and hatch
in utero (a few embryos are layed before bagging is observed) [71]. MT14355 hermaphrodites
were crossed with HC396 heterozygous males (unc-119 (e2498) III; qtIs19[elt-3p::yfp, unc-119+].
Worms homozygous for ftt-2 (n4426Δ) and elt-3p::yfpwere isolated by identifying “bagging”
non-Unc hermaphrodites that produced 100% elt-3p::yfp-expressing progeny. This new strain
was genotyped to confirm homozygosity of the ftt-2 deletion allele using a primer set (Forward
primer: 5’TGAGAAAGAGAAGAAAGAGGGCG, Reverse primer: 5’GATAGGGAGAGACGCACA
GAAAAC) that amplifies only the wild-type allele. Individual worms were lysed in 3 μl of single-
worm lysis buffer (50 mMKCl, 10 mM Tris pH 8.3, 2.5 mMMgCl2•6 H2O, 0.45% NP-40,
0.45% Tween-20, 0.01% Gelatin, plus 1 mg/ml Proteinase K) by freezing the worms in lysis
buffer at -80°C for 1 hour, heating to 65°C for 1.5 hours, and finishing with a 15 minute incuba-
tion at 95°C. The presence or absence of the wild-type allele in ftt-2 was detected by PCR using
TaqDNA polymerase (Invitrogen, #10342). No wild-type allele was detected in strain FC275.

FC276 (ftt-2 (n4426Δ) X; jcIs1 IV): MT14355 (ftt-2 (n4426Δ) X) heterozygous males were
crossed with SU93 (jcIs1 IV) hermaphrodites. Worms homozygous for both loci were obtained
and genotyped in a manner similar to FC275.

FC279 (par-5(it55) unc-22(e66) IV/nT1[unc-?(n754dm) let-?] (IV;V); zzEx116[AJM-1::
ceCherry), lbp-1p::gfp]): Homozygous loss-of-function par-5mutants are maternal-effect lethal
and therefore cannot be propagated [63]. However, a balanced heterozygous strain, KK299
(par-5(it55) unc-22(e66) IV/nT1[unc-?(n754dm) let-?] (IV;V)), containing a balanced strong
loss-of-function par-5 allele was obtained from the Caenorhabditis Genetics Center (CGC)
[63]. This strain produces two classes of viable offspring: fertile heterozygotes that are Unc,
and par-5 unc-22 homozygotes that twitch and lay only dead eggs. However, the balanced het-
erozygous strain is highly unstable, preventing efficient genetic crosses with reporter strains.
Consequently, we co-injected the fluorescence-tagged constructs lbp-1p::gfp (pKK1) and AJM-
1::ceCherry (pJS555, a generous gift from Jeffrey Simske) into the balanced strain, and the
resulting balanced, transgenic strain was maintained. Twitching, unbalanced offspring of this
strain—homozygous for par-5 (it55) unc-22(e66) and expressing the transgene array—were
identified and used for imaging of the Par mutant phenotype.

EFF-1 Cytoplasmic Domain and Cell-Cell Fusion
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FC280 (eff-1(zz10) II; unc-119 (e2498) III; qtIs19[elt-3p::yfp, unc-119+]): FC142 (eff-1(zz10)
II) hermaphrodites were crossed with HC396 heterozygous males (unc-119 (e2498) III; qtIs19
[elt-3p::yfp, unc-119+]). “Dumpy” worms (a phenotype of homozygous eff-1(zz10) animals)
that produced 100% elt-3p::yfp positive progeny were isolated to create the homozygous strain.

RNAi
A par-5 RNAi feeding construct was generously provided by Sieu Sylvia Lee’s lab [72] and was
transformed into the E. coli feeding strain HT115 (DE3) [73]. The transformed bacteria were
streaked from a frozen stock onto a Luria Broth (LB)-Amp agar plate overnight at 37°C for 16
hours. One colony of par-5 RNAi was grown in 5 ml LB-Amp media overnight at 37°C for 16
hours. Sixty-millimeter NGM plates supplemented with 2 mM IPTG were seeded with 200 μl
of par-5 RNAi overnight culture, a sufficient quantity to sustain multiple generations of propa-
gating C. elegans, and the plated bacteria were allowed to induce siRNA expression for 24
hours at room temperature. Five L2/L3-stage FC275 larvae (P0) were washed twice in a 200 μL
drop of M9 buffer then transferred to the induced par-5 RNAi NGM plate. Larvae were cul-
tured at 20°C and monitored for hatching and growth of their offspring (F1) to the L3/L4 stage
before the F1-L3/L4 larvae were mounted for imaging (see below).

EFF-1 Localization Detection
Transgenic embryos from strain FC254 were obtained by standard dissection from non-Unc
gravid adults and were mounted in Egg Buffer (118mM NaCl, 48mM KCl, 3mM CaCl, 3mM
MgCl, 5mMHepes pH7.0) with 1% methyl cellulose (Sigma-Aldrich, #274429) and 0.09% 20-
μm polystyrene beads (a 1:30 dilution from stock suspension, Polysciences, Inc., #18329).
Time-lapse, widefield fluorescence microscopy (PlanApo 60X, 1.4 NA, Nikon Eclipse TE300
with automatic shutter control, Cooke Sensicam cooled CCD, Metamorph acquisition control
software) was used to record the localization of EFF-1(S632/634/654A)::GFP in embryos. Eight
one-micron-spaced optical sections through the dorsal or ventral hypodermal surface were
imaged every 2.5 minutes for 15 timepoints. Maximum intensity Z-projections of four (ventral)
or five sections (dorsal) were rendered using ImageJ [74]. FC183 embryos were imaged using
the techniques described under “Monitoring Cell-Cell Fusion”.

Monitoring Cell-Cell Fusion
Embryos from SU93, FC75, HC396, FC280, FC80, FC275, FC276, and FC279 were isolated
and mounted as above. A spinning disk confocal microscope (PlanFluor 40X, NA 1.30 objec-
tive, Perkin Elmer/Prairie Ultraview RS5 laser launch system, Yokogawa CSU 21 microlens
scanhead, Nikon Eclipse TE2000-E inverted microscope, Hamamatsu ORCA-AG cooled CCD
camera) fitted with a Perfect Focus System (Nikon) was controlled by MetaMorph software
(Molecular Devices) to create 4-dimensional (4D) renditions of cell fusions during embryonic
development. YFP signal was excited with a 514 nm laser or GFP signal was excited with a 488
nm laser. Stacks of confocal optical sections spaced 1μm apart through the whole embryo were
collected every 2.5 minutes for 12 hours. Maximum intensity Z-projections of the confocal
stacks over the 12-hour time period were rendered using MetaMorph or ImageJ [74]. (For
HC396 and FC80, images were taken without the Perfect Focus System.)

Larvae from FC275 (par-5 RNAi), HC396 and FC280 were transferred to a 200 μL drop of
M9 buffer (22mM KH2PO4, 42mM Na2HPO4, 86mM NaCl) containing 0.1 M levamisole to
paralyze the worms for imaging purposes. Larvae were mounted between a slide and coverslip
in M9 buffer with 0.1 M levamisole, 1% methyl cellulose, 0.09% 20-μm polystyrene beads
(Polysciences, Inc., #18329) and imaged using spinning disk confocal microscopy (Plan Fluor
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20X, NA 0.50 objective). YFP signal was excited with a 514 nm laser. Confocal stacks of optical
sections spaced 1μm apart through the whole larva were collected. Maximum intensity Z-pro-
jections from sections through the hypodermis were rendered using ImageJ [74].

Results

EFF-1’s Cytoplasmic Domain Is Required for Normal Cell Fusion Activity
in vivo
We have briefly discussed and characterized the eff-1(zz1)mutant elsewhere [51]. This mutant
has a premature Trp>Stop nonsense mutation at residue 587 that eliminates all but two resi-
dues of EFF-1A’s cytoplasmic domain (S1 Fig). Nonsense mediated decay (NMD) analysis sug-
gests that the loss of function in eff-1(zz1) animals is due to defects within the expressed
protein, rather than message instability brought on by the nonsense mutation (see S1 Support-
ing Information). To more fully understand the contribution of the missing domain to normal
function, we extended our analysis of the eff-1(zz1) phenotype. All eff-1(zz1)mutant hatchlings
exhibited abnormal tail whip morphology visible using a dissecting microscope. This pheno-
type is also manifest in every other known eff-1 loss-of-function allele. In order to more pre-
cisely appraise the severity of this molecular defect, we compared other morphological
measures of the Eff phenotype among a collection of alleles. We found that eff-1(zz1) animals
have a rather normal-looking body morphology, in striking contrast to strong loss-of-function
eff-1mutants (e.g. zz8, zz10, and ku433 alleles), which are Dumpy. Quantitative comparison of
adult (96 hr) body length also showed an intermediate defect in eff-1(zz1) when compared to
both mild and null alleles of eff-1 (Fig 1A). These phenotypic characteristics suggest that eff-1
(zz1)mutants have sufficient functional EFF-1 activity to execute cell fusions required for most
of normal morphogenesis, but that some fusions are sufficiently delayed to reveal fully pene-
trant defects in the larval tail whip and adult body length. Alternatively, other non-fusion-
related events might be affected.

To gain further insight into the defects induced by this mutation, we directly monitored the
timing of embryonic fusion events in the hypodermis of eff-1(zz1)mutant embryos by observ-
ing AJM-1::GFP at intercellular junctions via high-resolution imaging. By the 1.5- to 2-fold
stage of normal embryonic development, 17 dorsal hypodermal cells (comprising 16 mem-
brane contacts) normally complete fusion as they begin forming the hyp7 syncytium [33,75].
In strong eff-1mutant embryos, none of these cell junctions disappear (refer to Fig 4 for AJM-
1::GFP control images). However, in eff-1(zz1) embryos, we did observe disappearance of some
hypodermal cell junctions–a phenomenon associated with completion of cell fusion events—
within this normal timeframe (Fig 1B, S1 Movie). We more precisely quantified the timing of
these fusions relative to other contemporaneous developmental events. To compare the activity
of EFF-1 expressed from eff-1(zz1) against the activity from the wild-type gene (Fig 4, t = 450),
we counted the number of fused dorsal hyp7 junctions before the first embryonic movement at
the 1.5-fold stage. This test revealed a significant difference between eff-1(zz1) embryos and
wild-type embryos in the number of fusion events completed by this stage (p<0.001 in inde-
pendent t-test, Fig 1C).

Removal of Predicted 14-3-3 Binding Motif Phosphorylation Sites Does
Not Disrupt Normal EFF-1 Hypodermal Localization
Previous results demonstrated that EFF-1 requires the serine residues within both of the two
potential 14-3-3-binding phospho-motifs (S1 Fig) in order for an eff-1 full-length transgene to
induce timely fusions in vivo. Mutation of these serines to alanine, a residue incapable of
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phosphate modification, prevented rescue of cell fusions when EFF-1(S632/634A) and EFF-1
(S654A) were expressed transgenically in an eff-1(oj55)mutant background. Moreover, human
14-3-3η binding to EFF-1::GFP in vitro was reduced or eliminated following these serine-to-
alanine substitutions, strongly suggesting that 14-3-3 proteins might engage EFF-1 at these
sites in vivo [51].

We hypothesized that the predicted 14-3-3 binding motifs are required for EFF-1::GFP
localization to characteristic fusion-competent hypodermal cell contacts in vivo [38]. To test
this, we mutated all three serines in both 14-3-3-binding sites (EFF-1(S632/634/654A)::GFP)
to prevent phosphorylation and possible binding of 14-3-3 to these putative phospho-motifs
within EFF-1::GFP. Projections of widefield epifluorescence stacks in Fig 2A show the locali-
zation pattern of EFF-1(S632/634/654A)::GFP between a pair of hypodermal cells pro-
grammed to fuse on the ventral side of the embryo (Fig 2A and S2 Movie). When compared
to wild-type EFF-1::GFP (Fig 2B) [38], the mutant EFF-1(S632/634/654A)::GFP localized
and accumulated to the junction between the ventral cells with normal timing during hypo-
dermal enclosure and elongation. Similar results were observed with EFF-1(S632/634/654A)::
GFP localization between hypodermal cells programmed to fuse on the dorsal side of the
embryo (S3 Movie). No aberrant or ectopic localization patterns were observed compared to
wild-type EFF-1::GFP [38].

Fig 1. eff-1(zz1)mutants display a growth defect and are delayed in embryonic hyp7 cell fusions. (A)
Normalized body-length measurements from 96-hour-old adult worms carrying distinct mutations in eff-1.
Genotype-matched control strains used for each normalization were: N2 (Bristol) for alleles oj55, hy21, zz10,
and ku433; C55584 (mIs12 II) for zz1 and zz8; SU93 (jcIs1) for zz7. Mean and standard deviation are shown
(n = 17–76). (B) Confocal volume projection of a 1.5-fold eff-1(zz1)mutant embryo expressing AJM-1::GFP.
Arrows show sites in hyp7 where AJM-1::GFP has disappeared, indicating the final stages of fusion between
2 pairs of cells. Arrowheads show intact cell junctions between hyp7 cells that are fusion-delayed. A wild-type
AJM-1::GFP embryo at an equivalent embryonic stage is shown in Fig 4 (t = 450) where arrows show fused
junctions. Anterior is left and dorsal is up. Scalebar = 10 μm. (C) Average number of fused hyp7 cell borders
seen before the beginning of embryonic movement (~1.5 fold stage) in wild-type (n = 5) and eff-1(zz1) (n = 13)
embryos. Error bars show standard error of the mean. *p<0.001 in an independent t-test.

doi:10.1371/journal.pone.0146874.g001
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Normal Levels of FTT-2 or PAR-5 Are Not Required for Hypodermal Cell
Fusions in EFF-1-Expressing Cells
Despite evidence that the identified motifs are required for the full fusogenic function of EFF-1
and an observation that a 14-3-3 protein can bind EFF-1 only in the presence of these motifs,
there have been no data reported assessing whether C. elegans 14-3-3 proteins, FTT-2 and PAR-
5, are needed for embryonic fusion events. We therefore examined 14-3-3 loss-of-function
mutants for absence or aberrations of cell fusions in EFF-1-expressing hypodermal cells. Cell
fusions were monitored during twomajor steps of cell fusion: 1) fusion pore formation indicated
by diffusive cytoplasmic content mixing using the elt-3p::yfp reporter [70], a diffuse cytoplasmic,
hypodermis specific reporter characterized here for the first time as a cell-cell fusion reporter
(Fig 3 and S4 Movie) or lbp-1p::gfp, which shows similar hypodermis specific expression and
cytoplasmic diffusion as elt-3p::yfp [36,51,76], and 2) widening of the fusion aperture seen by
displacement and disappearance of intercellular junctions between fused cells using the AJM-1::
GFP marker, a sub-adherens junction marker previously established as a cell-cell fusion reporter
(Fig 4) [36,69,75]. These hallmark processes of cell fusion, cytoplasmic diffusion and disappear-
ance of intercellular junctions, are delayed or absent in eff-1 fusion mutants (Fig 3 lower panel
and Fig 4 inset respectively). Transgenic 14-3-3 loss-of-function embryos expressing these cell
fusion reporters were imaged throughout embryonic development and analyzed for defects in
cell-cell fusions responsible for formation of the large hypodermal syncytium, hyp7.

First, we observed that functionally null ftt-2 (n4426Δ)mutants showed no disruptions in
the reproducible timing, position, or orientation of cell fusions, when compared to wild-type
embryos and worms [33,35,69]. Cytoplasmic mixing (Fig 5A and S5 Movie) and recession and
dissolution of intercellular junctions (Fig 5B and S6 Movie) occurred between all dorsal fusion-
competent cells within the normal time-span of development. No ectopic fusions were seen.

Next, we assessed the requirement for PAR-5 in embryonic cell fusions. As previously
reported, par-5(it55) animals exhibit the strongest expressivity compared to other character-
ized alleles and the overwhelming majority of par-5(it55) embryos fail to complete

Fig 2. EFF-1(S632/634/654A)::GFP localization patterns are similar to wild-type EFF-1::GFP in vivo. Time-lapse images of EFF-1(S632/634/654A)::
GFP show spatiotemporal localization to fusion competent ventral (A) cell borders (arrow) in the absence of phosphorylatable residues within putative 14-3-3
binding sites compared to wild-type EFF-1::GFP (B). One-micron-spaced image stacks were captured every 2.5 minutes using widefield (A) or confocal (B)
microscopy, and maximum intensity Z-projections of the ventral surface were rendered. In 100% of the mutant embryos (n = 3), the same pattern of junctional
localization is seen as for wild-type EFF-1::GFP (B) [38]. Anterior is up and posterior is down. Times shown are in minutes.

doi:10.1371/journal.pone.0146874.g002
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morphogenesis; however, cellular differentiation of multiple cell types does occur [63]. In our
hands, homozygous par-5(it55)mutant hermaphrodites produced embryos that were embry-
onic lethal and characterized by failed morphogenesis. We assessed whether cell fusions occur
in the resulting disordered tissues by use of the transgene lbp-1p::gfp, which is highly expressed
in a subset of fusogenic cells of the hypodermal lineage. This reporter has previously been used
to study hypodermal fusions by observing cytoplasmic diffusion of GFP between fusion-fated
cells [36,51,76]. In par-5mutant embryos, we observed several cell-cell fusions taking place,
even within aberrantly formed embryos. Fig 6 (S7 Movie) shows sets of neighboring bright and
dark cells rapidly exchange fluorescent cytoplasm, a characteristic trait of cell fusions in these
assays [36,38,51]. The fusion-competent cells seen in Fig 6 are most likely differentiated dorsal
hypodermal cells (misshapen and poorly organized), because they display the strong fluores-
cence intensity of lbp-1p::gfp reporter expression that is typical of this cell type [76]. These
results indicate that cell fusion is possible after loss of par-5, even while other aspects of hypo-
dermal morphogenesis are severely affected.

EFF-1 Induced Cell Fusions Persist After Reduction of Both 14-3-3
Paralogs
FTT-2 and PAR-5 are both expressed in the developing embryo [63,66]. Previous studies have
shown that ftt-2mRNA expression more than doubles upon specific knockdown of par-5
RNA, suggesting a possible compensation mechanism between par-5 and ftt-2 [72]. These data

Fig 3. elt-3p::yfp reporter of cell-cell fusions. Time-lapse images of a wild-type embryo (top panel) expressing the elt-3p::yfp cytoplasmic hypodermis-
specific reporter show cell-cell fusions in the developing epidermis. Fusion pores are revealed by diffusion of YFP from labeled cells to neighboring unlabeled
cells. Both white and yellow arrows denote the anterior and posterior limits of each successively expanded multinucleated cell during the stepwise fusion
events that create the large hyp6 and hyp7 syncytia. Yellow arrows show specific fusion events that were monitored in optical-section time-lapse recordings
of mutant and rescued genotypes in Figs 5 and 7. The elt-3p::yfp pattern of cytoplasmic and nuclear fluorescence in the dorsal hypodermis of the eff-1
mutant (bottom panel) remains variegated throughout embryonic elongation. Images are maximum intensity projections of 27 one-micron-spaced confocal
optical sections through the entire embryo shown at 5-minute intervals. Scalebar = 5 μm.

doi:10.1371/journal.pone.0146874.g003
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Fig 4. AJM-1::GFP reporter of cell-cell fusions. Time-lapse images of a wild-type embryo expressing a
sub-adherens junction marker, AJM-1::GFP, show the disappearance of borders between fused cells
(arrows). An eff-1mutant embryo (inset) shows no cell fusions at a timepoint past that at which most fusions
are completed in wild-type embryos. Anterior is left and dorsal is facing the viewer (t = 380–410) or oriented
up (t = 420–460). Images shown are maximum intensity Z-projections of 27 one-micron-spaced confocal
optical sections through the entire embryo, captured at 10-minute intervals. Scalebar = 10 μm.

doi:10.1371/journal.pone.0146874.g004
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Fig 5. Cell-cell fusions in the absence of FTT-2. Ftt-2 loss-of-function mutants show no disruption in the reproducible timing, position or orientation of cell-
cell fusions in the developing epidermis. (A) Time-lapse images of a ftt-2(n4426Δ) null embryo expressing elt-3p::yfp show a hallmark of cell-cell fusion, the
diffusion of YFP from labeled cells (solid arrows) to neighboring unlabeled cells (dashed arrows). Pattern observed in 100% of embryos (n = 5). (B) Time-
lapse images of a ftt-2 null embryo expressing a sub-adherens junction marker, AJM-1::GFP, show the disappearance of borders between fused cells
(arrows). Pattern observed in 100% of embryos (n = 2). Anterior is left and dorsal is facing the viewer (t = 380–420) or oriented up (t = 430–450). Images
shown are maximum intensity Z-projections of 27 one-micron-spaced confocal optical sections through the entire embryo, captured at 10-minute intervals.
Scalebar = 10 μm.

doi:10.1371/journal.pone.0146874.g005
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and the high sequence identity shared by PAR-5 and FTT-2 proteins (86.2%, [77]) puts for-
ward the possibility that PAR-5 and FTT-2 could functionally compensate for one another in
the single-mutant knockouts previously described. Consequently, a loss-of-fusion phenotype
would not be seen in the single-mutant knockouts if either protein could regulate EFF-1 func-
tion. Accordingly, we reduced both PAR-5 and FTT-2 levels in developing embryos to examine
the effect of loss of both species of 14-3-3 protein upon cell fusion.

In light of the diverse roles that 14-3-3s play in various cellular functions of eukaryotic
organisms, it could be intractably lethal to completely eliminate all 14-3-3 proteins during C.
elegans development. However, RNA interference in C. elegans allows genes to be knocked-
down at different stages of development with adjustable expressivity. We therefore conducted
double-knockdown experiments by inducing par-5-specific RNAi in ftt-2 null hermaphrodites,
using established dsRNA feeding techniques to induce systemic RNAi [78]. Initially, par-5
RNAi was fed to ftt-2(n4426Δ) larvae beginning at the L1 stage; however, this resulted in potent
sterility and gonad defects as the treated animals reached adulthood, a severe par-5mutant
phenotype previously reported [63]. We subsequently adjusted the larval stages at which par-5
RNAi was fed to ftt-2 null larvae, to determine the developmental time period at which suffi-
cient levels of maternal PAR-5 were expressed to allow for early gonad and oocyte development
and the production of fertilized embryos. We found that feeding ftt-2 null larvae with par-5
dsRNA starting at the late-L2 to early-L3 stage (L2/L3) allowed for fertility in the treated larvae
and avoided early stage maternal-effect embryonic lethality of their progeny. In this system,

Fig 6. Cell-cell fusions occur in par-5 loss-of-function mutants. Time-lapse images of a par-5(it55)
embryo showmultiple cell-cell fusion events, as seen in 100% of observed embryos (n = 3). A cytoplasmic
reporter, lbp-1p::gfp, is specific to a subset of hypodermal cells that fuse to form hyp7. Three noticeable
fusions events (t = 0–10, t = 60–70, t = 80–90) are apparent by a decrease in GFP fluorescence (solid arrow)
of a brighter cell (dashed arrow) fusing with darker neighbors. Timepoints 110–130 reveal an adjacent bright
cell (t = 110, dashed arrow) and dark cell that fuse with each other (t = 120, solid arrow and asterisk) to form a
binucleated cell (dashed bracket). This binucleate cell subsequently dims while fusing with other neighboring
cells (t = 130, solid bracket, decrease in fluorescence). Shortly after, one additional fusion event occurs
(t = 130–140). Images shown are maximum intensity Z-projections of 27 one-micron-spaced confocal optical
sections through the entire embryo, captured at 10-minute intervals. Posterior is lower-left and dorsal is
lower-right. Scalebar = 10 μm.

doi:10.1371/journal.pone.0146874.g006
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any hatching offspring from L2/L3 par-5-RNAi fed parents continued, themselves, to receive
par-5 RNAi through feeding during larval development post-hatching.

A strong par-5 knockout phenotype was observed in these “escaping” progeny, as they
showed gonad defects and sterility in adulthood. This par-5 RNAi maternal effect phenotype cor-
responds with previous characterization of “escaping” progeny after RNAi [63]. Despite their
fully expressed defects in gonadogenesis, however, these hatching offspring of ftt-2-null par-5-
RNAi animals displayed no visible defects in hyp7 cell fusion, as seen in the pattern of elt-3p::yfp
fluorescence, during their larval growth (Fig 7). Fig 7B shows a double row of hyp7 syncytial
nuclei, resulting from embryonic and post-embryonic fusions, in a double-knockdown L4-stage
larva. This pattern appears unperturbed when compared to a wild-type larva (Fig 7A) and con-
trasted with an eff-1 null larva (Fig 7C), each also at the L4 stage. These results indicate that the
four waves of larval hyp7 fusions occur correctly in the absence of ftt-2 expression and with par-5
expression as low as it can practically be suppressed. We concluded that these dozens of EFF-
1-dependent hypodermal cell fusion events do not require normal levels of 14-3-3 proteins.

Discussion
It is poorly understood how EFF-1 is regulated to accumulate and become actively fusogenic at
the apical border of cells preparing for fusion. In vivomosaic analyses by Podbilewicz et al. [41]
and us (S2 Fig) show that fusion occurs only when both neighboring cells express EFF-1. This
mutual dependence upon EFF-1 activity in adjacent fusion-fated cells invites a model of homo-
typic interaction between EFF-1 molecules at the interface between cell fusion partners
[27,38,41,46]. As mentioned, recent structural studies of EFF-1’s ectodomain show homology
to class II viral fusion proteins but with a unique mechanism from class II viral fusogens
[45,46]. The current study explored possible interactions in cis, between EFF-1’s endodomain
and other intracellular proteins that might regulate its function and localization. Our previous
results [51] had offered seemingly strong evidence suggesting that 14-3-3 adaptor molecules
bind to predicted 14-3-3 binding motifs in EFF-1’s cytoplasmic domain and thereby potentiate
cell-fusion activity. From those preliminary results and the multiple cellular roles in which 14-
3-3s engage, we modeled several hypotheses of how 14-3-3 could regulate EFF-1 at the level of
localization, oligomerization, or the activation of fusogenicity.

Despite the earlier evidence that stimulated these hypotheses, however, the current study
reveals that 14-3-3s are not key regulators, either spatially or temporally, of hypodermal cell
fusion directed by EFF-1. We have shown here that EFF-1A::GFP is correctly translocated and
retained at hypodermal cell membranes programmed to fuse, even when the possibility of 14-3-
3 binding has been abrogated. Likewise, the EFF-1 cell fusion machinery is not affected by the
loss of 14-3-3 proteins, as evidenced by the persistence of hypodermal cell-cell fusions in
embryogenesis and larval development when PAR-5 and FTT-2 have been reduced or elimi-
nated. However, we cannot exclude the possibility that EFF-1Amay be regulated by 14-3-3s in
other syncytial tissues or as part of distinct functions or mechanisms. The range of tissues and
timing at which EFF-1 is thought to trigger membrane fusion is quite diverse [2,36,39,79,80].
We have not surveyed all of these instances for fidelity in either the rate or accuracy of fusion
events. Nonetheless, in the visibly prominent cell fusions that we studied here, loss of potential
interaction motifs from EFF-1 or loss of potential interacting proteins PAR-5 and FTT-2 did not
induce any measurable deficit in protein localization or fusogenic activity of EFF-1, respectively.

EFF-1’s Cytoplasmic Domain and Its Effect on Fusogenicity
It appears that the C-terminal cytoplasmic tail of the EFF-1A splice variant, harboring the
putative 14-3-3-binding consensus motifs, is required for only some actions of the eff-1 gene
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during development. The quantitative analysis from our high-resolution imaging of cell fusions
in the embryo suggest that visible defects in the form of eff-1(zz1) larvae may result from slight
delays in fusions that are critically important to formation of the tail-whip structure. It was
recently shown that AFF-1, but not EFF-1, is necessary for tail-spike cell fusion [81,82]. There-
fore, the actions of EFF-1 function must be necessary for other events required for normal tail-
whip formation, perhaps hyp10 cell fusion, considering the highly penetrant tail-whip defects
seen in eff-1(zz1) and all other currently characterized eff-1mutants. Our new data combine
with previous descriptions of abnormal tail-whip morphogenesis to suggest that the highly

Fig 7. Larval hypodermal cell fusions occur normally in 14-3-3 double mutants.Double-knockdown
mutant phenotype was generated using par-5-specific RNAi on ftt-2(n4426Δ) null mutant animals. Cells fated
to fuse into the hyp7 syncytium of L4 larvae are labeled with elt-3p::yfp in three different genotypes: wild-type
(A), 14-3-3 double knockdown (B), and eff-1(zz10) null mutant (C). In panels A and B, fields of syncytial hyp7
cytoplasm and nuclei display even and continuous distribution of YFP (arrows), as seen in 100% of observed
larvae (n = 12 and 4 respectively). In the eff-1 null larva in panel C, arrows indicate labeled hypodermal cells
that have failed to fuse with hyp7 (arrowheads), as seen in in 100% of observed larvae (n = 6).
Scalebar = 10 μm.

doi:10.1371/journal.pone.0146874.g007
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penetrant larval tail-whip defects seen in eff-1(zz1) are likely due to a rather short delay in cell
fusions. It seems, therefore, that the morphogenesis of some structures, such as the tail, result-
ing from EFF-1 function are more exacting in their need for temporally precise fusion events
than are other structures in the body plan. Alternatively, it is possible that other non-tail tissues
simply suffer less-visible or less-functionally obvious defects when EFF-1-dependent fusions
are slightly delayed by a minor decrease in EFF-1 activity. It may also be true that the EFF-1A
isoform is uniquely required for tail-whip morphogenesis, the only context in which the func-
tions of EFF-1A and -1B have been compared directly in vivo [38]. These possibilities remain
to be tested.

We hypothesize that EFF-1(zz1)’s decreased potency is a result of decreased protein stabil-
ity, impairment of cell surface expression, or fusogen activation. Reduced viral fusogen oligo-
merization and reduced interaction of viral fusogens with accessory proteins at the membrane
have both been reported in viral fusion-protein mutants with truncated cytoplasmic tails
[49,83]. We can exclude the possibility that EFF-1A’s cytoplasmic tail is essential to the core
membrane fusion mechanism, because cell fusions in eff-1(zz1) do occur, albeit at a slightly
delayed rate. But the possibility remains that the EFF-1A C-terminus offers a fusion-enhancing
function, as has been reported for some viral fusogens. For example, truncation of the simian
parainfluenza virus 5 (SV5) fusion protein’s cytoplasmic domain impedes fusion pore enlarge-
ment and the endodomain of reovirus FAST fusogens is important for the membrane fusion
mechanism and syncytiogenesis [50,84]. Future studies will be needed to determine whether
the fusogenic activity per EFF-1 molecule is actually affected by this or any mutation. Cur-
rently, our data do not discriminate between changes in stability, activity, or localization.

Comparing Analyses of EFF-1 Function in vivo and in Exogenous Assay
Systems
This report describes techniques that more precisely measure fusogen function potency in
worm strains carrying modified versions of eff-1. Fine tail whip structure remains the most sen-
sitive bioassay for the detection of a slight reduction in eff-1 function, as it is disrupted in all
alleles that we have studied. The strong penetrance of tail defects produces an essentially binary
signal. Defects are seen in the tail whip of all offspring with reduced or absent EFF-1 activity
versus a normal tail whip phenotype in all offspring of wild-type EFF-1 animals. Alleles with
severe loss of molecular integrity present with defects in body length and morphology. Analysis
of a range of mutant alleles using these assays allows us to rank-order molecular defects by the
degree of decreased body length (Fig 1A). In contrast, the embryonic hyp7 fusion-timing assay
—used here to measure deficits in the eff-1(zz1)mutant (Fig 1B and 1C)–should allow for
quantification of subtle differences in fusogenic activity among weakly hypomorphic or hyper-
morphic eff-1 alleles. Fine tail whip structure, body length, and hyp7 fusion-timing could be
used to assess the activity of transgenic EFF-1 variants expressed during mutant-rescue assays
but the strength of EFF-1 activity produced from endogenous and transgene loci has yet to be
quantitatively reconciled for eff-1. Until reconciled, direct evaluative comparisons between
mutations in loco and in vitro are not possible.

Concordance between heterologous organism- and cell-based assays, in vivo assays, and
predictive algorithms varies. We found in our analysis of eff-1(zz1) that the loss of the full EFF-
1A C-terminal tail produces a measurable deficit in the fusogenic activity of eff-1 gene products
in vivo. These conclusions agree with data previously published using transfected EFF-1A and
EFF-1B cDNAs to induce fusion of cultured insect cells [41]. Thus, some structure/function
analyses carried out in an alternative experimental system can correctly predict the behavior of
the molecule within the cells of developing nematode tissues. In contrast, we saw no
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appreciable impact on EFF-1 localization or fusogenic function when we examined mutations
specifically disrupting a predicted interaction between EFF-1 and endogenous 14-3-3 proteins.
In this case, our observations do not harmonize with previous evidence or predicted function
for a physical binding interaction between EFF-1A and a human 14-3-3 protein. Apparently,
in this case, the extrapolations from in vitro data are not supported in vivo. Alternatively, the
impact of the loss of a 14-3-3/EFF-1 interaction, if one exists in vivo, must be slight or difficult
to visualize in the tissues we examined.

Post-Translational Modification of the Cytoplasmic Domain of EFF-1
Our previous results showed that alanine-substitution of serines S632, S634, and S654 reduces
the activity of EFF-1 (expressed from a transgene) and blocks the ability to rescue endogenous
mutations [51]. While we have not directly shown that these serines are phosphorylated in
vivo, our previous in vitro results showed that a phospho-specific protein, human 14-3-3, will
only bind EFF-1A::GFP if these three serine residues have not been replaced with non-phos-
phorylatable alanines. In addition, threonine-substitution of these serines, to retain a phos-
phorylatable residue at each position, conserves the cell-fusion activity of an eff-1 transgene
expressed in the nematode [51]. The NetPhos 2.0 phosphorylation prediction algorithm scores
S632 and S634 as highly likely to be phosphorylated, and S654 as not as likely [85]. Interest-
ingly, site-directed deletion of S654 (653–655) from EFF-1A has no detrimental effect on a
transgene’s ability to rescue eff-1(oj55)mutants (data not shown). For reasons we cannot
explain, it seems that mutation of the S654 to alanine proves to be more detrimental than this
triplet deletion. The strong prediction of S632 and S634 phosphorylation gives reason to believe
that these serines on the EFF-1A C-terminus may become phosphorylated in C. elegans in vivo.

Using a prediction tool (KinasePhos 2.0) for phosphorylation sites and the kinases that act
on such sites, we found that multiple kinases are predicted to act on S632, S634, and S654 [86].
Testing whether EFF-1-dependent cell fusion is sensitive to the activity of C. elegans kinase
homologues may be an interesting course of investigation as control of EFF-1 fusogenicity by
phosphorylation would be a novel form of fusogen regulation. Likewise, generation of phos-
phomimetic mutations (aspartate or glutamate) at S632 and S634 might reveal phosphoryla-
tion effects on EFF-1 function that are detectable by one of the in vivo assays established in this
study. To our knowledge, phosphorylation has been shown to only indirectly affect virus-cell
fusion and virally induced syncytium formation [87,88]. In any hypothesis, modification of
EFF-1A’s cytoplasmic tail can only modulate its activity to generate efficiently timed cell
fusions, since we have shown here that delayed EFF-1-dependent fusions can still occur in the
absence of its C-terminus.

Supporting Information
S1 Fig. Full-length EFF-1A protein sequence. The cytosolic domain is underlined, the loca-
tion of the premature stop in eff-1(zz1) is marked with a box, and the 14-3-3 motifs are in bold
with the key residues highlighted gray.
(TIF)

S2 Fig. Mosaic strain analysis confirms mutual requirement for EFF-1 in both fusing cells.
Cells without DsRed2 have lost a rescuing eff-1 transgene and have reverted to an eff-1(zz10)
null genotype. Cell borders are highlighted by AJM-1::GFP. Images are projections of stacks of
confocal optical sections. In all panels, dorsal is up, ventral is down. (A) A larva with uniform
hypodermal expression of DsRed2 is completely rescued for dorsal hyp7 cell fusion. There are
no remaining unfused dorsal junctions in hyp7. (B-D) Three examples of mosaic worms with
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unfused rescued/mutant cell pairs. In (B) and (C), filled arrowheads show unfused borders
between cells. (D) Top panel, AJM-1::GFP localization showing intact junctions (green hollow
arrowheads); middle panel, DsRed2 expression, indicating eff-1+ genotype, with the number of
red cells fused into each small syncytium indicated (red dotted lines); bottom panel, merged
image showing eff-1 null cells (white arrowheads) separated from fused eff-1+ neighbors by
intercellular AJM-1::GFP junctions. In contrast to these examples, we found only one instance
(out of 768 fusion-fated cell borders assayed) of an unfused cell junction lying between pairs of
DsRed2-positive eff-1+ cells. Although this rare cell pair may have expressed levels of exoge-
nous EFF-1 insufficient to elicit timely cell fusion, the observed 99.87% efficiency of fusion in
cases of mutual EFF-1 expression underscores the repeated failure to fuse of cell pairs mis-
matched for EFF-1 expression. These results agree with those of Podbilewicz et al. in cultured
cells and in similarly generated mosaic animals [41], and therefore strongly support the model
that EFF-1 acts homotypically, required by both cells for fusion to occur. Strain Construction:
FC196: N2 (Bristol) C. elegans hermaphrodites were transformed by microinjection of pSur5Rc
and pJE8 (wild-type eff-1) to generate extrachromosomal array zzEx78. pSur5Rc, a gift from
Morgan Tucker and Min Han at the University of Colorado, includes the DsRed2 coding
region (Clonetech) ligated via KpnI/EcoRI subcloning downstream of a 3.6 kb sur-5 promoter,
originally derived from pTG96.2 [89]. Worms with red nuclear fluorescence were selected
from the progeny following injection and were crossed to N2 males. FC204: FC196 (zzEx78
[eff-1+; pSur5Rc]) males were mated with FC75 (eff-1(zz10) II; jcIs1 IV) hermaphrodites. A
strain carrying zzEx78 and homozygous for both eff-1(zz10), and jcIs1 was identified by observ-
ing that all worms not carrying zzEx78 exhibited 100% fusion-defective phenotypes (homozy-
gous eff-1(zz10)), while progeny carrying zzEx78 were rescued for larval tail-whip defects and
disappearance of AJM-1::GFP junctions in the hypodermis. Imaging: Loss of the extrachromo-
somal array zzEx78 expressing eff-1+and DsRed2 during embryonic cell division results in a
mosaic pattern of red fluorescence. Mosaic animals were identified in which eff-1-rescued cells
expressing DsRed2 lay adjacent to non-red (eff-1 null) cells. Larvae were paralyzed with 1M
sodium azide and confocal image stacks were acquired on either a Perkin Elmer Ultraview RS5
or a Zeiss LSM 510 Meta confocal scanning microscope. Laser excitation used was at 488nm
for GFP excitation and either at 568nm or at 543nm for DsRed2. GFP and DsRed2 channels
were separated using linear unmixing software (Zeiss). Confocal z-stacks were converted to
TIFF format and rendered as projections using Image J software [74].
(TIF)

S1 Movie. Animals expressing EFF-1A with a C-terminal truncation have delayed embry-
onic cell fusions.Maximum-intensity projection of an eff-1(zz1) embryo expressing an adhe-
rens junction marker (AJM-1::GFP) imaged by 4-dimensional confocal microscopy. Arrows
denote fused junctions and arrowheads indicate unfused cell borders, with intact junctions still
observed before the embryo begins muscular movement. Anterior is left, dorsal is up. Time
shown is approximate age since fertilization. Scalebar = 10 μm. Early cytoplasmic fluorescence
seen in gut-fated cells (no longer visible at the time of adherens junctions phenotyping) is
expressed from the mIs12 transgene, which was included in the background in which we
screened for the zz1 mutation and is tightly linked to eff-1 on chromosome II.
(MOV)

S2 Movie. EFF-1(S632/634/654A)::GFP accumulation at a fusion-fated cell border on the
ventral embryo surface. Time-lapse maximum-intensity projection of the ventral surface of
the embryo shown in Fig 2A. Arrow indicates EFF-1(S632/634/654A)::GFP accumulation at
the cell contact. Scalebar = 10 μm.
(MOV)
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S3 Movie. EFF-1(S632/634/654A)::GFP accumulation at a fusion-fated cell border on the
dorsal embryo surface. Time-lapse maximum-intensity projection of the dorsal surface of the
embryo. Arrow indicates EFF-1(S632/634/654A)::GFP accumulation at a cell contact. One-
micron-spaced image stacks were captured every 2.5 minutes using widefield microscopy, and
maximum intensity Z-projections of the dorsal surface were rendered. In 100% of the mutant
embryos (n = 4), the same pattern of junctional localization is seen as for wild-type EFF-1::GFP
[38]. Scalebar = 10 μm.
(MOV)

S4 Movie. Cell fusions in an embryo expressing elt-3p::yfp, a cytoplasmic hypodermis-spe-
cific reporter. Time-lapse maximum-intensity projection of the wild-type embryo shown in
Fig 3. Arrows denote the anterior and posterior limits of each successively expanded multinu-
cleated cell during the stepwise fusion events that create the large hyp6 and hyp7 syncytia. Yel-
low arrows show specific fusion events that were monitored in optical-section time-lapse
recordings of mutant and rescued genotypes in Figs 5 and 7. Scalebar = 5 μm.
(MOV)

S5 Movie. Cell fusions in an ftt-2(n4426Δ) null embryo expressing elt-3p::yfp, a cytoplasmic
hypodermis-specific reporter. Time-lapse maximum-intensity projection of the embryo
shown in Fig 5A. White arrows indicate bright cells prior to fusion with neighboring dark cells.
Yellow arrows show syncytial cells after equilibration of cytoplasmic fluorescence.
Scalebar = 10 μm.
(MOV)

S6 Movie. Cell fusions in an ftt-2(n4426Δ) null embryo expressing the intercellular junction
marker AJM-1::GFP. Time-lapse maximum-intensity projection of the embryo shown in Fig
5B. White arrows indicate disappearing junctions between fusing cells. Scalebar = 10 μm.
(MOV)

S7 Movie. Cell fusions in a par-5(it55) loss-of-function embryo expressing lbp-1p::gfp, a
cytoplasmic hypodermis-specific reporter. Time-lapse maximum-intensity projection of the
embryo in Fig 6. White arrows indicate bright cells prior to fusion with neighboring cells. Yel-
low arrows indicates cell fusion event observed by a decrease in reporter expression after
fusion. Red arrow denotes a bi-nucleated cell. Scalebar = 10 μm.
(MOV)

S1 SUPPORTING INFORMATION. Nonsense mediated decay (NMD) assay.
(DOCX)
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