157 research outputs found

    Evaluation of Cold-formed Steel Connections Attached with Pneumatically Driven Pins

    Get PDF
    A comprehensive experimental study was conducted to examine the shear and tensile strength of pneumatically driven pin connections used in cold-formed steel construction. This study included the key parameters that influence the connection strength: steel thickness (16-, 18- and 20-gauge steel), sheathing thickness (1/2 Unipan and 1/2 Dens-Glass Gold). The shear design values given in the AlSI design specifications for screw connections are compared with those obtained from a series of lap shear tests and a good agreement is obtained. Initial analysis of the AlSI design equation for tensile failure due to pull-over yielded poor results when compared to the withdrawal test values. Upon further analysis it was determined the connection failed in punch shear mode and the results compared well with the ACI punch shear analysis. The new equation developed in this study can be used to predict the strength of pneumatically driven pin connections in cold-formed steel construction

    Fast Post-placement Rewiring Using Easily Detectable Functional Symmetries

    Get PDF
    Timing convergence problem arises when the estimations made during logic synthesis can not be met during physical design. In this paper, an efficient rewiring engine is proposed to explore maximal freedom after placement. The most important feature of this approach is that the existing placement solution is left intact throughout the optimization. A linear time algorithm is proposed to detect functional symmetries in the Boolean network and is used as the basis for rewiring. Integration with an existing gate sizing algorithm further proves the effectiveness of our technique. Experimental results are very promising

    A fatigue damage model for seismic response of RC structures

    Get PDF
    Numerous damage models have been developed in order to analyze seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of continuum damage mechanics are more consistent with the definition of damage as a phenomenon with mechanical consequences because they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, most of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Cipollina et al. [Cipollina A, López-Hinojosa A, Flórez-López J. Comput Struct 1995;54:1113–26] is made in order to include the low cycle fatigue. Such a model employs in its formulation irreversible thermodynamics and internal state variable theory

    Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial)

    Get PDF
    Purpose To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features. Materials and Methods In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29–85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts. Results Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50–59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases). Conclusion The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening programs, particularly in younger women with dense breasts. © RSNA, 2015The TOMMY Trial (a comparison of digital breast tomosynthesis with mammography in the UK Breast Screening Programme) was supported by the NIHR Health Technology Assessment Programme.This is the final published version of the article. It was originally published in Radiology (Gilbert et al., Radiology, 2015, doi:10.1148/radiol.2015142566). The final version is available at http://dx.doi.org/10.1148/radiol.201514256

    Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial).

    Get PDF
    PURPOSE: To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features. MATERIALS AND METHODS: In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29-85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts. RESULTS: Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50-59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases). CONCLUSION: The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening programs, particularly in younger women with dense breasts. (©) RSNA, 2015.The TOMMY Trial (a comparison of digital breast tomosynthesis with mammography in the UK Breast Screening Programme) was supported by the NIHR Health Technology Assessment Programme.This is the final published version of the article. It was originally published in Radiology (Gilbert et al., Radiology, 2015, doi:10.1148/radiol.2015142566). The final version is available at http://dx.doi.org/10.1148/radiol.201514256

    Detection of involved margins in breast specimens with X-ray phase-contrast computed tomography.

    Get PDF
    Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively. We have developed a system that can perform phase-based computed tomography (CT) scans in minutes, used it to image 101 specimens approximately half of which contained neoplastic lesions, and compared results against those of a commercial system. Histological analysis was carried out on all specimens and used as the gold standard. XPCI-CT showed higher sensitivity (83%, 95% CI 69-92%) than conventional specimen imaging (32%, 95% CI 20-49%) for detection of lesions at margin, and comparable specificity (83%, 95% CI 70-92% vs 86%, 95% CI 73-93%). Within the limits of this study, in particular that specimens obtained from surplus tissue typically contain small lesions which makes detection more difficult for both methods, we believe it likely that the observed increase in sensitivity will lead to a comparable reduction in the number of re-operations

    Volumetric high-resolution X-ray phase-contrast virtual histology of breast specimens with a compact laboratory system

    Get PDF
    The assessment of margin involvement is a fundamental task in breast conserving surgery to prevent recurrences and reoperations. It is usually performed through histology, which makes the process time consuming and can prevent the complete volumetric analysis of large specimens. X-ray phase contrast tomography combines high resolution, sufficient penetration depth and high soft tissue contrast, and can therefore provide a potential solution to this problem. In this work, we used a high-resolution implementation of the edge illumination X-ray phase contrast tomography based on "pixel-skipping" X-ray masks and sample dithering, to provide high definition virtual slices of breast specimens. The scanner was originally designed for intra-operative applications in which short scanning times were prioritised over spatial resolution; however, thanks to the versatility of edge illumination, high-resolution capabilities can be obtained with the same system simply by swapping x-ray masks without this imposing a reduction in the available field of view. This makes possible an improved visibility of fine tissue strands, enabling a direct comparison of selected CT slices with histology, and providing a tool to identify suspect features in large specimens before slicing. Combined with our previous results on fast specimen scanning, this works paves the way for the design of a multi-resolution EI scanner providing intra-operative capabilities as well as serving as a digital pathology system

    Detection of involved margins in breast specimens with x-ray phase-contrast computed tomography

    Get PDF
    Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively. We have developed a system that can perform phase-based computed tomography (CT) scans in minutes, used it to image 101 specimens approximately half of which contained neoplastic lesions, and compared results against those of a commercial system. Histological analysis was carried out on all specimens and used as the gold standard. XPCI-CT showed higher sensitivity (83%, 95% CI 69–92%) than conventional specimen imaging (32%, 95% CI 20–49%) for detection of lesions at margin, and comparable specificity (83%, 95% CI 70–92% vs 86%, 95% CI 73–93%). Within the limits of this study, in particular that specimens obtained from surplus tissue typically contain small lesions which makes detection more difficult for both methods, we believe it likely that the observed increase in sensitivity will lead to a comparable reduction in the number of re-operations
    • …
    corecore