3,313 research outputs found

    Quantitative sensory testing in children with sickle cell disease: additional insights and future possibilities.

    Get PDF
    Quantitative sensory testing (QST) is used in a variety of pain disorders to characterize pain and predict prognosis and response to specific therapies. In this study, we aimed to confirm results in the literature documenting altered QST thresholds in sickle cell disease (SCD) and assess the test-retest reliability of results over time. Fifty-seven SCD and 60 control subjects aged 8-20 years underwent heat and cold detection and pain threshold testing using a Medoc TSAII. Participants were tested at baseline and 3 months; SCD subjects were additionally tested at 6 months. An important facet of our study was the development and use of a novel QST modelling approach, allowing us to model all data together across modalities. We have not demonstrated significant differences in thermal thresholds between subjects with SCD and controls. Thermal thresholds were consistent over a 3- to 6-month period. Subjects on whom hydroxycarbamide (HC) was initiated shortly before or after baseline testing (new HC users) exhibited progressive decreases in thermal sensitivity from baseline to 6 months, suggesting that thermal testing may be sensitive to effective therapy to prevent vasoocclusive pain. These findings inform the use of QST as an endpoint in the evaluation of preventative pain therapies

    Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF

    Get PDF
    STUDY QUESTION. Are significant abnormalities in outward (K+) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? SUMMARY ANSWER. Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. WHAT IS KNOWN ALREADY. Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K+ channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K+ channels in human spermatozoa or the incidence and functional consequences of K+ channel defects. STUDY DESIGN, SIZE AND DURATION. Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS. Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca2+ influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K+ signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE. Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION. For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS. These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized

    Microvascular resistance predicts myocardial salvage and infarct characteristics in ST-elevation myocardial infarction

    Get PDF
    <b>Background:</b> The pathophysiology of myocardial injury and repair in patients with ST‐elevation myocardial infarction is incompletely understood. We investigated the relationships among culprit artery microvascular resistance, myocardial salvage, and ventricular function.<p></p> <b>Methods and Results:</b> The index of microvascular resistance (IMR) was measured by means of a pressure‐ and temperature‐sensitive coronary guidewire in 108 patients with ST‐elevation myocardial infarction (83% male) at the end of primary percutaneous coronary intervention. Paired cardiac MRI (cardiac magnetic resonance) scans were performed early (2 days; n=108) and late (3 months; n=96) after myocardial infarction. T2‐weighted‐ and late gadolinium–enhanced cardiac magnetic resonance delineated the ischemic area at risk and infarct size, respectively. Myocardial salvage was calculated by subtracting infarct size from area at risk. Univariable and multivariable models were constructed to determine the impact of IMR on cardiac magnetic resonance–derived surrogate outcomes. The median (interquartile range) IMR was 28 (17–42) mm Hg/s. The median (interquartile range) area at risk was 32% (24%–41%) of left ventricular mass, and the myocardial salvage index was 21% (11%–43%). IMR was a significant multivariable predictor of early myocardial salvage, with a multiplicative effect of 0.87 (95% confidence interval 0.82 to 0.92) per 20% increase in IMR; P<0.001. In patients with anterior myocardial infarction, IMR was a multivariable predictor of early and late myocardial salvage, with multiplicative effects of 0.82 (95% confidence interval 0.75 to 0.90; P<0.001) and 0.92 (95% confidence interval 0.88 to 0.96; P<0.001), respectively. IMR also predicted the presence and extent of microvascular obstruction and myocardial hemorrhage.<p></p> <b>Conclusion:</b> Microvascular resistance measured during primary percutaneous coronary intervention significantly predicts myocardial salvage, infarct characteristics, and left ventricular ejection fraction in patients with ST‐elevation myocardial infarction.<p></p&gt

    Multiple Incommensurate Magnetic States in the Kagome Antiferromagnet Na2Mn3Cl8

    Full text link
    The kagome lattice can host exotic magnetic phases arising from frustrated and competing magnetic interactions. However, relatively few insulating kagome materials exhibit incommensurate magnetic ordering. Here, we present a study of the magnetic structures and interactions of antiferromagnetic Na2_2Mn3_3Cl8_8 with an undistorted Mn2+^{2+} kagome network. Using neutron-diffraction and bulk magnetic measurements, we show that Na2_2Mn3_3Cl8_8 hosts two different incommensurate magnetic states, which develop at TN1=1.6T_{N1} = 1.6 K and TN2=0.6T_{N2} = 0.6 K. Magnetic Rietveld refinements indicate magnetic propagation vectors of the form q=(qx,qy,32)\mathbf{q} = (q_{x},q_{y},\frac{3}{2}), and our neutron-diffraction data can be well described by cycloidal magnetic structures. By optimizing exchange parameters against magnetic diffuse-scattering data, we show that the spin Hamiltonian contains ferromagnetic nearest-neighbor and antiferromagnetic third-neighbor Heisenberg interactions, with a significant contribution from long-ranged dipolar coupling. This experimentally-determined interaction model is compared with density-functional-theory simulations. Using classical Monte Carlo simulations, we show that these competing interactions explain the experimental observation of multiple incommensurate magnetic phases and may stabilize multi-q\mathbf{q} states. Our results expand the known range of magnetic behavior on the kagome lattice.Comment: 13 pages, 8 figure

    Systemic microvascular dysfunction in microvascular and vasospastic angina

    Get PDF
    Aims: Coronary microvascular dysfunction and/or vasospasm are potential causes of ischaemia in patients with no obstructive coronary artery disease (INOCA). We tested the hypothesis that these patients also have functional abnormalities in peripheral small arteries. Methods and results: Patients were prospectively enrolled and categorised as having microvascular angina (MVA), vasospastic angina (VSA) or normal control based on invasive coronary artery function tests incorporating probes of endothelial and endothelial-independent function (acetylcholine and adenosine). Gluteal biopsies of subcutaneous fat were performed in 81 subjects (62 years, 69% female, 59 MVA, 11 VSA, and 11 controls). Resistance arteries were dissected enabling study using wire myography. Maximum relaxation to ACh (endothelial function) was reduced in MVA vs. controls [median 77.6 vs. 98.7%; 95% confidence interval (CI) of difference 2.3–38%; P = 0.0047]. Endothelium-independent relaxation [sodium nitroprusside (SNP)] was similar between all groups. The maximum contractile response to endothelin-1 (ET-1) was greater in MVA (median 121%) vs. controls (100%; 95% CI of median difference 4.7–45%, P = 0.015). Response to the thromboxane agonist, U46619, was also greater in MVA (143%) vs. controls (109%; 95% CI of difference 13–57%, P = 0.003). Patients with VSA had similar abnormal patterns of peripheral vascular reactivity including reduced maximum relaxation to ACh (median 79.0% vs. 98.7%; P = 0.03) and increased response to constrictor agonists including ET-1 (median 125% vs. 100%; P = 0.02). In all groups, resistance arteries were ≈50-fold more sensitive to the constrictor effects of ET-1 compared with U46619. Conclusions: Systemic microvascular abnormalities are common in patients with MVA and VSA. These mechanisms may involve ET-1 and were characterized by endothelial dysfunction and enhanced vasoconstriction. Clinical trial registration: ClinicalTrials.gov registration is NCT03193294

    Peripheral quantitative computed tomography (pQCT) predicts humeral diaphysis torsional mechanical properties with good short-term precision.

    Get PDF
    Peripheral quantitative computed tomography (pQCT) is a popular tool for non-invasively estimating bone mechanical properties. Previous studies have demonstrated pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remains unknown. The aim of the current study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [IP] and polar Strength Strain Index [SSIP]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing six repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSIP both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSIP at the midshaft humerus were less than 1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans
    corecore