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Abstract

Peripheral quantitative computed tomography (pQCT) is a popular tool for non-invasively 

estimating bone mechanical properties. Previous studies have demonstrated pQCT provides 

precise estimates that are good predictors of actual bone mechanical properties at popular distal 

imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal 

sites remains unknown. The aim of the current study was to explore the predictive ability and 

short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site 

gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined 

ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in 

cadaver humeri (density-weighted polar moment of inertia [IP] and polar Strength Strain Index 

[SSIP]) to predict actual torsional properties. Short-term precision was assessed in vivo by 

performing six repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy 

individuals (degrees of freedom = 150), with repeat scans performed by the same and different 

testers and on the same and different days to explore the influences of different testers and time 

between repeat scans on precision errors. IP and SSIP both independently predicted at least 90% of 

the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values 

for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP 

and SSIP at the midshaft humerus were less than 1.5% and were not influenced by pQCT 

assessments being performed by different testers or on different days. These data indicate that 

pQCT provides very good prediction of midshaft humerus mechanical properties with good short-
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term precision, with measures being robust against the influences of different testers and time 

between repeat scans.
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Introduction

Peripheral quantitative computed tomography (pQCT) uses a small purpose-built scanner to 

obtain tomographic images of the extremities. It has the advantage over dual-energy X-ray 

absorptiometry (DXA) of being able to image bone tissue in three dimensions which allows 

assessment of volumetric density and cross-sectional structure. These measures may have 

advantages in estimating bone size and strength. For instance, pQCT-derived strength 

estimates improved fracture prediction beyond that provided by DXA-derived areal bone 

mineral density (aBMD) alone (1). Also, pQCT may reveal novel observations that may 

otherwise be missed with the sole use of DXA. For example, pQCT was recently used to 

demonstrate that exercise completed when young had lasting benefits on bone size and 

estimated strength, despite loss of DXA-derived bone mass benefits (2).

To facilitate the use of pQCT, it needs to provide precise measures that predict actual bone 

properties. Previous studies explored the predictive ability and short-term precision of pQCT 

measures of estimated bone strength at popular imaging sites—tibial and radial diaphyses 

and distal metaphyses (3-15). At diaphyseal sites, pQCT provides bone strength estimates 

via calculation of cross-sectional moments of inertia and section moduli. Multiplication of 

these structural-based measures by the quotient of pQCT measured cortical density and 

physiologic density (1200 mg/cm3) is used to account for the influence of bone material 

properties, with the density-weighted section modulus provided by pQCT referred to as the 

Strength Strain Index (SSI) (16). SSI (and analogous pQCT-derived strength estimates) of 

the radial and tibial diaphyses have been shown to be relatively predictive and precise, 

predicting 66-98% of the variance in the ability to resist bending forces (7-915) and having 

root mean squared coefficients of variation (RMS-CV) typically <2.5% (4-611-14).

While pQCT provides predictive and precise estimates of bone mechanical properties at 

distal imaging sites, its predictive ability and precision at more proximal sites remains 

unknown. The upper arm is a proximal site popular for pQCT imaging as the humeral 

diaphysis is a frequent site for exploring the skeletal effects of exercise (217-23). It is 

possible that precision of pQCT measures of the upper arm is less than at distal sites due to a 

combination of factors, including heightened difficulty repetitively positioning subjects 

further than usual within the machine gantry, greater potential for subtle movement artifacts 

due to difficulty stabilizing the proximal end of the bone against subtle trunk motions, and a 

larger limb volume than present distally which heightens beam hardening and reduces pQCT 

precision (1213). In support of possibly reduced pQCT precision when imaging the upper 

arm, preliminary work by Sievänen et al. (12) reported a RMS-CV of 5.6% for estimated 

strength measures of the midshaft humerus.
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The current study aimed to explore the predictive ability and short-term precision of pQCT 

estimates of midshaft humerus mechanical properties. Predictive ability was determined ex 

vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties 

in cadaver humeri to predict actual torsional properties. Short-term precision was assessed in 

vivo by six repeat pQCT scans performed at the level of the midshaft humerus in 30 young, 

healthy individuals, with repeat scans performed by the same and different testers and on the 

same and different days to explore the influences of different testers and time between 

repeat scans on precision errors.

Methods

Ex vivo predictive ability

Specimens and imaging—Unilateral humeri were dissected from 20 fresh human 

cadavers following Institutional Review Board approval. The bones were cleaned of soft-

tissues, wrapped in saline-soaked dressings, and stored at −20°C. Prior to imaging, humeri 

were thawed to room temperature and measured for length. Each humerus was positioned in 

the gantry of a Stratec XCT 3000 machine equipped with software version 6.20C (Stratec 

Medizintechnik GmbH, Pforzheim, Germany). A scout scan was performed and a reference 

line placed at the inferior aspect of the capitulum. A tomographic slice (thickness=2.3 mm; 

voxel size=300 μm; scan speed=20 mm/s) was taken at 50% of humeral length from the 

reference line. The specimens were kept moist during imaging via saline-soaked dressings.

Each tomographic slice was analyzed to obtain bone mineral density, structure, and 

estimated strength. Cortical mode 1 (threshold, 710 mg/cm3) was used to obtain cortical 

volumetric bone mineral density (Ct.vBMD, mg/cm3), bone mineral content (Ct.BMC, mg/

mm), and area (Ct.Ar, cm2). Total area (Tt.Ar, cm2), periosteal (Ps.Pm, mm) and 

endocortical (Ec.Pm, mm) perimeters, and average cortical thickness (Ct.Th, mm) were 

obtained by analyzing the slices using contour mode 1 (threshold, 710 mg/cm3) to define the 

outer bone edge and peel mode 2 (threshold, 400 mg/cm3) to separate the cortical and 

subcortical/medullary compartments. Thickness and perimeter measures used a circular ring 

model, and medullary area (mm2) was derived as total area minus cortical area. Bone 

strength was estimated by the density-weighted polar moment of inertia (IP, mm4) and polar 

SSI (SSIP, mm3) obtained using cortical mode 2 (threshold = 400 mg/cm3).

Mechanical Testing—Mechanical testing was performed at room temperature with the 

specimens kept moist via saline irrigation. The ends of each humerus were potted in 

aluminum potting boxes using high strength resin (Bondo Body Filler; 3M Collision Repair 

Solutions, St. Paul, MN USA). The boxes were rigidly coupled to a servohydraulic materials 

testing machine (Bionix; MTS Systems Corporation, Eden Prairie, MN) equipped with an 

axial/torsional load cell rated to ±25 kN (axial load) and ±250 N.m (torsional load) (Fig. 

1A). The longitudinal axis of the diaphysis was aligned with the load frame and a 20 N axial 

compressive preload applied. The proximal humerus was externally rotated in displacement 

control at 10°/s until failure. Data were collected at 50 Hz. Biomechanical parameters of 

interest included maximum torque at failure (N.m) and torsional rigidity (N.m/°) (Fig. 1B).
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In vivo short-term precision

Subjects—A convenience sample of 30 young, healthy subjects was recruited. Young, 

healthy individuals were assessed as they are frequently the focus of studies exploring the 

skeletal effects of exercise at the humeral diaphysis (217-23). Subjects were included if they 

were ≥18 years of age and not pregnant. Subjects presented for repeat testing on 2 separate 

days, a minimum of 1 week apart. Height, weight and humeral length were measured, and 

pQCT performed during the first study visit. During the second study visit, only humeral 

length was measured and pQCT performed. Assessments were performed on the non-

dominant arm. The study was approved by the Institutional Review Board and all subjects 

provided informed consent.

Anthropometric measures—Humeral length was measured using a sliding 

anthropometer as the distance between the lateral border of the acromion and the 

radiohumeral joint line. Humeral length was measured during each study visit by two testers 

to determine within- and between-tester and within- and between-day reproducibility. The 

mean of the measures during the first study visit was used as humeral length for localization 

of all pQCT scans.

pQCT—Six scans of the humerus were performed using the same pQCT machine and 

scanning parameters as used to image cadaver specimens. Four scans were performed during 

the first visit, with each tester performing two scans with interim repositioning. During the 

second visit, each tester performed one scan each. For scanning, subjects were positioned 

supine with their arm in 90° shoulder abduction and centered in the pQCT machine gantry. 

A concave, padded holder was placed under the arm for support and elastic restraints placed 

around the supracondylar region and surgical neck of the humerus to minimize movement. 

A scout scan was performed to observe the radiohumeral joint, a reference line placed 

through the joint at the distal edge of the humeral capitulum, and a tomographic slice taken 

at 50% of humeral length from the reference line.

Each tomographic slice was analyzed as described for the cadaveric specimens to obtain 

bone mineral density, structure, and estimated strength. In addition, each slice was analyzed 

to obtain soft tissue composition at the level of midshaft humerus using contour mode 3 

(threshold, −100 mg/cm3) to locate the skin surface and peel mode 2 (threshold, 40 mg/cm3) 

to locate the subcutaneous fat–muscle boundary. A F03F05 filter was used to remove noise. 

Soft tissue variables of interest included total tissue cross-sectional area (CSA, mm2), 

absolute (cm2) and relative (%) muscle and fat CSA, and muscle density (mg/cm3).

Statistical analyses—Statistical analyses were performed using IBM SPSS Statistics for 

Windows (v22.0; IBM Corp., Armonk, NY) with a level of significance set at 0.05. Linear 

regression analysis assessed the ability of pQCT-derived measures to predict cadaver humeri 

mechanical properties, with the fit of each univariate model assessed using coefficients of 

determination (R2). Within- and between-tester and within- and between-day agreement for 

humeral length measures were determined via intraclass correlation coefficients (ICC [2,1]). 

The RMS method was used to compute the overall standard deviation (RMS-SD, expressed 

in the respective unit of measure) and coefficient of variation (RMS-CV, %) of the precision 
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error of pQCT measures for the six replicate scans in the 30 subjects (total degrees of 

freedom = 150). RMS-SD and RMS-CV are referred to as absolute and relative precision, 

respectively. The absolute and relative LSC at the 95% confidence level were derived for 

each RMS-SD and RMS-CV precision error estimate by multiplying by 2.77, respectively 

(24). To determine the influence of tester and timing on pQCT precision, two-way factorial 

analyses of variance (ANOVAs) were performed on individual subject absolute precision 

error measurements (SD) for the following subgroups of duplicate scans: 1) within-tester 

and within-day; 2) between-tester and within-day; 3) within-tester and between-day, and; 4) 

between-tester and within-day.

Results

Ex vivo predictive ability

Cadavers had varying characteristics resulting in the acquirement of humeri with a range of 

pQCT and mechanical properties (Table 1). None of the humeri exhibited any visible signs 

of injury or pathology. All of the humeri failed via a spiral-type fracture (Fig. 2). Fractures 

initiated at the mid-diaphysis in the majority of humeri (n=13), while fractures initiating in 

the proximal and distal diaphysis occurred in 3 and 4 humeri, respectively. Ct.BMC, Tt.Ar, 

Ct.Ar and Ps.Pm predicted 61%-85% of the variance in maximum torque and torsional 

rigidity, while Ct.Th predicted 35%-50% (all P<0.01, Table 2). Ct.vBMD did not predict 

humeri torsional mechanical properties (all P=0.43-0.74). IP and SSIP both independently 

explained over 90% of the variance in maximum torque and torsional rigidity (all P<0.001, 

Fig. 3).

In vivo short-term precision

Subject characteristics are shown in Table 1. There was high within- and between-tester, and 

within- and between-day agreement for humeral length measures (all ICC [2,1] r≥0.98). The 

overall absolute and relative precision measurements and the respective absolute and relative 

LSC values at the 95% confidence level are given in Table 3. The relative RMS for all six 

replicate scans ranged from 0.47-1.44% for bone measures and 0.70-2.75% for soft-tissue 

measures. The subsequent relative LSC values ranged from 1.29-3.99% for bone measures 

and 1.95-7.63% for soft-tissue measures.

The influences of tester and timing on the precision of pQCT measures are provided in 

Table 4. There were no significant tester by timing interactions on precision for any measure 

meaning that the two variables had independent effects on precision error (all P=0.07-0.96). 

There was a significant main effect for tester on precision of Ct.vBMD (P<0.01); however, 

tester had no significant main effect on precision for any other measure (all P=0.25-0.94) 

indicating that the measures performed by the two different testers were equally precise. 

Timing had a significant effect on precision measures for total tissue CSA, absolute muscle 

CSA and absolute fat CSA (all P<0.05) with between day measures being less precise.

Discussion

The current data indicate pQCT provides very good prediction of midshaft humerus 

mechanical properties with good short-term precision. IP and SSIP predicted at least 90% of 
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the variance in torsional mechanical properties of cadaver humeri. Previous studies 

exploring the ability of pQCT measures to predict bone mechanical properties exclusively 

exposed bones to bending and/or axial compressive forces (37-1015). Bending and 

compression are common directions of bone loading, but the measurement of high shear 

strains when completing functional tasks in in vivo strain gauge experiments indicates the 

presence of significant torsional loads (25). Torsional loading of the humerus is thought to 

be particularly prominent due to counteracting torques being applied at the shoulder and 

elbow ends of the bone, and contributes to exaggerated humeral head retroversion and the 

occurrence of spiral-type humeral diaphysis fractures in the dominant arm of overhead 

athletes (223). To our knowledge, only one previous study has explored the ability of pQCT 

to predict bone torsional mechanical properties. Lind et al. (26) observed SSIP predicted 

15% and 33% of maximal torque and torsional rigidity in rodent humeri, respectively. These 

values are much lower than in the current study; however, data collected from rodent humeri 

are not comparable to those obtained from cadaveric humeri due to the presence of a 

variable, yet large deltoid tuberosity in rodents and generally greater difficulty torsional 

testing rodent sized bones.

Bone mechanical properties are influenced by the amount, distribution and intrinsic 

properties of bone material present in the direction of loading. As SSIP and density-weighted 

IP take into account each of these contributors as they relate to resisting torques around a 

central axis, it is not surprising that SSIP and IP were both better predictors of ex vivo 

torsional mechanical properties than independent measures of bone mass, structure or 

intrinsic properties. SSIP and IP both independently predicted ≥90% of ex vivo mechanical 

properties and, thus, either can be used to predict mechanical properties of the midshaft 

humerus. However, SSIP was a slightly better predictor than IP. This observation is 

consistent with Wilhelm et al. (15) who found SSIP to predict slightly more of the variance 

in fracture load of cadaveric radii during three-point bending than IP (98% vs. 94%). SSIP 

and IP are related, with SSIP calculated as IP divided by the maximum distance of the 

furthest voxel to the torsional axis. As greatest shear stresses during torsional loading are 

experienced in material furthest from the loading axis, incorporation of the distance of the 

most extreme voxels from the torsional axis by SSIP enables it provide a slightly better 

prediction of mechanical properties than IP.

The current work demonstrates that pQCT is able to provide in vivo measures of the 

midshaft humerus in young, healthy individuals with good short-term precision. Measures 

with small precision errors allow the detection of small differences over time or between 

groups, ultimately reducing study sample sizes to detect a desired difference. Precision 

errors for skeletal measures of the midshaft humerus were up to double those we previously 

reported for measures performed of the tibial diaphysis (13). Reasons for the higher short-

term precision errors of pQCT measures of the humeral diaphysis were not assessed; 

however, possible explanations include those described in the introduction with regards to 

imaging more proximal skeletal sites (i.e. heightened difficulty positioning subjects further 

within the machine gantry and greater potential for subtle movement artifacts). Another 

possible explanation for lower precision of pQCT measures of the midshaft humerus in the 

current study is the performance of scans by different assessors than those in our previous 
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work. However, one assessor in the current study (A.L.H.) was very experienced performing 

pQCT scans of the midshaft humerus having previously performed several hundred scans 

and both assessors (A.M.W. and A.L.H.) were equally precise suggesting assessor 

experience was not a contributing factor.

Despite precision errors for pQCT scans of the midshaft humerus being higher than those 

previously shown for the tibial diaphysis, they were still low (<1.5%) and within acceptable 

levels for bone densitometry (27). In addition, they were substantially lower than those 

reported by Sievänen et al. (12) who reported a RMS-CV of 5.6% for estimated strength 

measures of the midshaft humerus. Reasons for our better short-term precision compared to 

Sievänen et al. (12) are not clear; however, there are differences between our respective 

studies. Limb positioning and stabilization procedures differed between the studies which 

can influence the potential for movement artifacts. However, a greater occurrence of subtle 

movement artifacts in the study by Sievänen et al. (12) is unlikely to explain their higher 

precision error as movement artifacts impact on Ct.vBMD measures and short-term 

precision of Ct.vBMD in our respective studies were comparable (0.5% vs. 0.5%). Sievänen 

et al. (12) estimated midshaft humerus mechanical properties via the calculation of a bone 

strength index which was calculated as IP multiplied by pQCT measured Ct.vBMD. This 

method of density-weighting differs to current methods which involve multiplying SSIP or 

IP by the quotient of pQCT measured Ct.vBMD and physiologic density. However, the use 

of physiologic density to normalize Ct.vBMD essentially introduces a constant factor that 

does not influence precision measures. Both studies followed the recommendations of the 

ISCD which state that short-term precision error for densitometry assessments should 

obtained using the root mean square (RMS) approach from an assessment with 30 degrees of 

freedom (2728). However, overall precision error in the current study was determined from 

a higher number of degrees of freedom compared to Sievänen et al. (12) (150 vs. 31 degrees 

of freedom), with degrees of freedom potentially influencing precision estimates and 

degrees of freedom higher than recommended by the ISCD providing greater confidence in 

the precision estimate (29).

The current work had a number of strengths, including testing of cadaveric humeri in a 

novel, yet functional direction, determination of overall precision errors using a large 

number of degrees of freedom, and investigation of the influences of different testers and 

time between repeat scans on precision errors. There are also several limitations that warrant 

acknowledgement. During torsional testing of the cadaveric humeri, not all bones failed at 

the midshaft where pQCT imaging was performed. However, the ability of pQCT measures 

to predict mechanical properties were very good despite the discrepancies between the 

imaging and bone failure locations possibly negatively impacting predictive relationships. 

Precision values reported are for the testing protocol utilized and may not be representative 

of different protocols. This includes the use of different scanning parameters (including 

voxel size) and analysis techniques (including thresholding). Finally, the precision values in 

the current study are limited to the subject population and anatomical site assessed. It is not 

possible to extrapolate the data to pQCT measures at alternate sites or populations with 

differing characteristics, including age, size and musculoskeletal health status.
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Overall, this study found pQCT provides very good prediction of midshaft humerus 

mechanical properties with good short-term precision. Density-weighted IP and SSIP both 

provided predicted actual midshaft humerus torsional mechanical properties, and precision 

errors for skeletal measures were generally robust against the influences of different testers 

and time between repeat scans. Based on these data, investigators performing pQCT 

measures of the midshaft humerus can have confidence in the utility of pQCT in obtaining 

estimates of midshaft humerus mechanical properties.
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Figure 1. 
A) Experimental set-up for torsional mechanical testing of the humeral diaphysis. B) 

Representative torque-displacement curve generated from torsional testing of a cadaveric 

humerus. Properties derived from the curve were maximum torque at failure (peak of the 

curve on the y-axis) and torsional rigidity (slope of the linear portion of the curve).
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Figure 2. 
Spiral-type fracture of the humeral diaphysis during torsional mechanical testing. A) 

Humeral diaphysis prior to mechanical testing. B) Spiral-type fracture (arrows) of the 

humeral diaphysis following external rotation of the humeral head. C) Magnified view of the 

fracture shown in B.
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Figure 3. 
Scatterplots illustrating the relationship between pQCT-derived estimated strength (density-

weighted polar moment of inertia [IP; panels A,B] and polar Strength Strain Index [SSIP; 

panels C,D]) and cadaver humeri mechanical properties (maximum torque [panels A,C] and 

torsional rigidity [panels B,D]).
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Table 1

Characteristics of the cadavers and subjects used in the ex vivo predictive ability and In vivo short-term 

precision studies, respectively

Cadavers Subjects
a

Mean ± SD Range Mean ± SD Range

Cadaver characteristics

 Sex (M:F) 10:10 - 16:14 -

 Age (yr) 72.1 ± 16.8 24 - 91 25.7 ± 6.5 21 - 29

 Height (m) 1.69 ± 0.11 1.50 - 1.83 1.73 ± 0.10 1.50 - 1.92

 Weight (kg) 70.4 ± 11.9 40.9 - 90.9 73.4 ± 13.7 48.7 - 108.7

 BMI (kg/m2) 24.8 ± 4.1 18.2 - 32.5 24.3 ± 3.3 18.5 - 34.9

Humeri pQCT properties

 Ct.vBMD (mg/cm3) 1215 ± 52 1104 - 1296 1184 ± 33 1112 - 1241

 Ct.BMC (mg/mm) 213.8 ± 65.1 98.0 - 343.6 261.6 ± 56.4 174.4 - 366.7

 Tt.Ar (cm2) 3.04 ± 0.64 2.12 - 4.38 3.25 ± 0.76 2.19 - 5.38

 Ct.Ar (cm2) 1.76 ± 0.51 0.84 - 2.77 2.21 ± 0.51 1.44 - 3.20

 Ct.Th (mm) 3.49 ± 1.04 1.82 - 5.28 4.46 ± 0.74 2.86 - 6.04

 Ps.Pm (mm) 61.3 ± 6.4 51.6 - 74.2 63.6 ± 7.3 52.5 - 82.1

 Ec.Pm (mm) 39.1 ± 7.6 24.9 - 55.8 35.5 ± 6.4 27.5 - 56.6

 IP (cm4) 1.37 ± 0.54 0.51 - 2.34 1.70 ± 0.72 0.74 - 3.60

 SSIP (cm3) 1.16 ± 0.37 0.48 - 1.79 1.35 ± 0.43 0.76 - 2.35

Humeri mechanical properties

 Maximum Torque (N.m) 60.6 ± 19.5 24.1 - 94.2 - -

 Torsional Rigidity (N.m/°) 2.37 ± 0.66 1.26 - 3.31 - -

a
Data in each subject determined from average of six replicate scans
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Table 2

Coefficients of determination (R2) between pQCT measures and torsional mechanical properties in cadaver 

humeri (n = 20)

pQCT
measure

Maximum Torque Torsional Rigidity

R2 P-value R2 P-value

Ct.vBMD 0.01 NS 0.04 NS

Ct.BMC 0.76 <0.001 0.61 <0.001

Tt.Ar 0.71 <0.001 0.81 <0.001

Ct.Ar 0.85 <0.001 0.71 <0.001

Ps.Pm 0.72 <0.001 0.83 <0.001

Ec.Ps 0.01 NS 0.07 NS

Ct.Th 0.50 <0.001 0.35 <0.01

IP 0.90 <0.001 0.90 <0.001

SSIP 0.94 <0.001 0.92 <0.001
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Table 3

Overall precision measurements calculated by root mean square (RMS) method and 95% confidence least 

significant change (LSC) values for 30 subjects scanned six times each (degrees of freedom = 150)

pQCT measure
RMS LSC

Absolute (units) Relative (%) Absolute (units) Relative (%)

Bone measures

 Ct.vBMD (mg/cm3) 5.51 0.47 15.27 1.29

 Ct.BMC (mg/mm) 2.55 1.00 7.05 2.76

 Tt.Ar (mm2) 3.78 1.02 10.48 2.82

 Ct.Ar (mm2) 2.06 0.91 5.71 2.51

 Ps.Pm (mm) 0.34 0.50 0.93 1.39

 Ec.Pm (mm) 0.45 1.17 1.24 3.23

 Ct.Th (mm) 0.04 0.86 0.10 2.38

 IP (mm4) 252.6 1.40 699.7 3.88

 SSIP (mm3) 19.1 1.44 52.9 3.99

Soft tissue measures

 Total tissue CSA (cm2) 1.36 1.86 3.76 5.16

 Muscle

  Absolute CSA (cm2) 0.61 1.91 1.69 5.30

  Relative CSA (%) 0.46 1.11 1.26 3.06

  Density (mg/cm3) 0.58 0.70 1.60 1.95

 Fat

  Absolute CSA (cm2) 1.10 2.75 3.05 7.63

  Relative CSA (%) 0.49 1.00 1.36 2.78

J Clin Densitom. Author manuscript; available in PMC 2016 May 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Weatherholt et al. Page 16

Table 4

Influence of tester and timing on pQCT precision error
a

pQCT measure
Within-day Between-day Two-way ANOVA results

Within-tester Between-tester Within-tester Between-tester Tester Timing Interaction

Bone measures

 Ct.vBMD (mg/cm3) 3.36 ± 2.30 4.35 ± 3.28 2.60 ± 2.92 4.77 ± 3.26 <0.01 NS NS

 Ct.BMC (mg/mm) 1.74 ± 1.70 1.97 ± 1.69 1.53 ± 1.69 1.68 ± 1.12 NS NS NS

 Tt.Ar (mm2) 2.00 ± 2.00 2.02 ± 2.06 2.37 ± 2.68 2.62 ± 3.12 NS NS NS

 Ct.Ar (mm2) 1.42 ± 1.29 1.63 ± 1.38 1.51 ± 1.38 1.48 ± 1.13 NS NS NS

 Ct.Th (mm) 0.024 ± 0.027 0.030 ± 0.025 0.029 ± 0.024 0.030 ± 0.026 NS NS NS

 Ps.Pm (mm) 0.19 ± 0.19 0.18 ± 0.19 0.25 ± 0.25 0.27 ± 0.27 NS NS NS

 Ec.Pm (mm) 0.26 ± 0.35 0.26 ± 0.36 0.37 ± 0.45 0.37 ± 0.37 NS NS NS

 IP (mm4) 147 ± 149 156 ± 161 169 ± 195 168 ± 184 NS NS NS

 SSIP (mm3) 11.6 ± 13.0 17.0 ± 16.0 14.9 ± 12.4 15.1 ± 11.1 NS NS NS

Soft tissue composition

 Total tissue CSA (cm2) 0.66 ± 0.53 0.60 ± 0.48 1.28 ± 0.84 1.08 ± 1.05 NS <0.001 NS

 Muscle

  Absolute CSA (cm2) 0.29 ± 0.23 0.36 ± 0.28 0.61 ± 0.38 0.51 ± 0.45 NS <0.001 NS

  Relative CSA (%) 0.31 ± 0.23 0.40 ± 0.33 0.43 ± 0.37 0.43 ± 0.36 NS NS NS

  Density (mg/cm3) 0.40 ± 0.33 0.43 ± 0.47 0.55 ± 0.57 0.55 ± 0.51 NS NS NS

 Fat

  Absolute CSA (cm2) 0.51 ± 0.38 0.48 ± 0.35 0.88 ± 0.82 0.87 ± 0.75 NS 0.001 NS

  Relative CSA (%) 0.34 ± 0.26 0.39 ± 0.33 0.45 ± 0.42 0.39 ± 0.33 NS NS NS

a
Data indicate individual absolute precision error measurements (SD)
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