3,066 research outputs found

    Chemigation with Micronized Sulfur Rapidly Reduces Soil pH in a New Planting of Northern Highbush Blueberry

    Get PDF
    Northern highbush blueberry (Vaccinium corymbosum L.) is adapted to acidic soil conditions and often grows poorly when soil pH is greater than 5.5. When soil pH is high, growers will usually mix prilled elemental sulfur (So) into the soil before planting (converted to sulfuric acid by soil bacteria) and, if needed, inject acid into the irrigation water after planting. These practices are effective but often expensive, time consuming, and, in the case of acid, potentially hazardous. Here, we examined the potential of applying micronized So by chemigation through a drip system as an alternative to reduce soil pH in a new planting of ‘Duke’ blueberry. The planting was located in western Oregon and established on raised beds mulched with sawdust in Oct. 2010. The So product was mixed with water and injected weekly for a period of ≈2 months before planting and again for period of ≈2 months in late summer of the second year after planting (to assess its value for reducing soil pH once the field was established), at a total rate of 0, 50, 100, and 150 kg·ha−1 So on both occasions. Each treatment was compared with the conventional practice of incorporating prilled So into the soil before planting (two applications of 750 kg·ha−1 So each in July and Oct. 2010). Within a month of the first application of So, chemigation reduced soil pH (0–10 cm depth) from an average of 6.6 with no So to 6.1 with 50 kg·ha−1 So and 5.8 with 100 or 150 kg·ha−1 So. However, the reductions in pH were short term, and by May of the following year (2011), soil pH averaged 6.7, 6.5, 6.2, and 6.1 with each increasing rate of So chemigation, respectively. Soil pH in the conventional treatment, in comparison, averaged 6.6 a month after the first application and 6.3 by the following May. In July 2012, soil pH ranged from an average of 6.4 with no So to 6.2 with 150 kg·ha−1 So and 5.5 with prilled So. Soil pH declined to as low as 5.9 following postplanting So chemigation and, at lower depths (10–30 cm), was similar between the treatment chemigated with 150 kg·ha−1 So and the conventional treatment. None of the treatments had any effect on winter pruning weight in year 1 or on yield, berry weight, or total dry weight of the plants in year 2. Concentration of P, K, Ca, Mg, S, and Mn in the leaves, on the other hand, was lower with So chemigation than with prilled So during the first year after planting, whereas concentration of N, P, and S in the leaves were lower with So chemigation during the second year. The findings indicate that So chemigation can be used to quickly reduce soil pH after planting and therefore may be a useful practice to correct high pH problems in established northern highbush blueberry fields; however, it was less effective and more time consuming than applying prilled So before plantin

    Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    Get PDF
    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solarpowered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products

    European Oversight on Frontex

    Get PDF

    Modelling analogical change:A history of Swedish and Frisian verb inflection

    Get PDF

    An investigation of motor disabilities in people with multiple sclerosis using advanced magnetic resonance imaging

    Get PDF
    Completed under a Cotutelle arrangement between the University of Melbourne and Vrije Universiteit Amersterdam© 2020 Myrte StrikMultiple sclerosis (MS) is an autoimmune disorder of the brain and spinal cord, and the most common cause of neurological disability in young adults. The presentation of MS is highly heterogeneous with an unknown aetiology and no known cure, presenting as inflammation, demyelination and axonal injury/loss. MS pathology is disseminated throughout the central nervous system leading to a broad range of symptoms including cognitive dysfunctions, bowel and bladder problems, fatigue, sensory disturbances and difficulties with walking and balance. Up to 90% of people with MS experience motor impairments that significantly worsen with increasing disease severity, and which can affect both the upper and lower limbs. Motor impairments are often highly debilitating, ranging from muscle weakness, coordination loss, tremors to spasticity. However, while the pathophysiological mechanisms underpinning motor impairments in MS have been widely studied, they are not currently well understood. This is particularly true for early disease, a time when personalised treatment strategies can be formulated and will have maximal effect, preventing future deterioration and accumulation of disability. Consequently, there is an urgent need to understand the pathophysiology underlying motor impairments in MS and elucidate the microstructural and functional changes that occur at their earliest manifestation. To this end, we investigated the pathophysiology of motor impairments associated with dexterity and mobility in people with MS using advanced magnetic resonance imaging (MRI). Our investigations included functional resting-state (Chapters 2.1 and 2.2) and task (Chapter 3.1) MRI, diffusion weighted imaging (Chapter 3.2) and ultra-high field MRI (Chapters 3.1 and 3.2). Our findings consistently demonstrated a clear link between the development of motor impairments and alterations in the structure/function of the sensorimotor system, a system responsible for the integration of sensory information with motor processing in order to facilitate and maintain movement. Specifically, studying the sensorimotor system in its entirety using network analyses in a large cohort of people with MS, we identified functional disturbances within the sensorimotor system of patients with serious disabilities (Chapter 2.1), with disturbances particularly predictive of future progression of upper and lower limb impairments (Chapter 2.2). Further, using high resolution ultra-high field MRI and measures of motor behaviour in a cohort of patients with minimal motor impairments (Chapters 3.1 and 3.2), we similarly found a link between changes in the function and microstructure of the sensorimotor system and the presence of subtle impairments in hand function and walking. These findings provide evidence for the role of the sensorimotor network in the development of motor impairments. Potentially, the sensorimotor network might be central to the development of motor impairments in MS and represent a useful target for the development of imaging biomarkers for use in treatment development as well as understanding and monitoring the evolution of motor impairments. From this and subsequent work, it is hoped that this knowledge will lead to more effective treatments and management of patients, alleviating the burden of these impairments

    Assessment of the microbial community in the cathode compartment of a plant microbial fuel cell

    Get PDF
    Introduction: In plant microbial fuel cells (plant-MFCs) living plants and microorganisms form an electrochemical unit able to produce clean and sustainable electricity from solar energy. It is reasonable to assume that besides the bacteria in the anode compartment also the cathode compartment plays a crucial role for a stable high current producing plant-MFC. In this study we aim to identify dominant bacterial species in the cathode compartment of the plant-MFC
    • …
    corecore