94 research outputs found

    The use of inductively coupled plasma mass spectrometry to quantify chemical hazards in natural history collections: Arsenic and mercury in taxidermy bird specimens.

    Get PDF
    1 year embargo. The file attached is the author's proof version of the article. The published pdf is available on the Spectroscopy Europe website only after registering for a free account https://www.spectroscopyeurope.com/

    A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition

    Get PDF
    The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni–FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni–FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni–FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections

    Tropical tree branch-leaf nutrient scaling relationships vary with sampling location

    Get PDF
    Bivariate relationships between plant tissue nutrient concentration have largely been studied across broad environmental scales regardless of their covariation with soil and climate. Comparing leaf and branch wood concentrations of C, Ca, K, Mg, N, Na, and P for trees growing in tropical forests in Amazonia and Australia we found that the concentrations of most elements varied with sampling location, but with foliar and branch woody tissues varying from site to site in different ways. Using a Mixed Effect Model (MEM) approach it was further found that relationships between branch and leaf concentrations within individual plots differed in terms of both slope and/or significance to the ordinary least squares (OLS) estimates for most elements. Specifically, using MEM we found that within plots only K and Mg were correlated across organs, but with the K cross-organ intercept estimates varying significantly between sites. MEM analyses further showed that within-plot wood density variations were also negatively related to wood K and Na, suggesting a potentially important role for these cations in water transport and/or storage in woody tissues. The OLS method could not detect significant correlations in any of the above cases. By contrast, although Ca, N, and P leaf and wood tissue concentrations showed similar patterns when individual elements were compared across sites, MEM analyses suggested no consistent association within sites. Thus, for all these three elements, strong within-tree scaling relationships were inferred when data were analyzed across sites using OLS, even though there was no relationship within individual sites. Thus (as for Ca, N, and P) not only can a pooling of data across sites result in trait (co)variations attributable to the environment potentially being incorrectly attributed solely to the species and/or individual (the so-called “ecological fallacy”), but in some cases (as was found here for K and Na) the opposite can also sometimes occur with significant within-site covariations being obscured by large site-site variations. We refer to the latter phenomenon as “environmental obfuscation.

    New insights from zinc and copper isotopic compositions of atmospheric particulate matter from two major European cities

    Get PDF
    This study reports spatial and temporal variability of Zn and Cu isotopes in atmospheric particulate matter (PM) collected in two major European cities with contrasting atmospheric pollution, Barcelona and London. We demonstrate that non-traditional stable isotopes identify source contributions of Zn and Cu and can play a major role in future air quality studies. In Barcelona, fine PM were collected at street level at sites with variable traffic density. The isotopic signatures ranged between −0.13±0.09 and −0.55±0.09‰ for d66ZnIRMM and between +0.04±0.20 and +0.33±0.15‰ for d65CuAE633. Copper isotope signatures similar to Cu sulphides and Cu/Sb ratios within the range typically found in brake wear suggest that non-exhaust emissions from vehicles are dominant. Negative Zn isotopic signatures characteristic for gaseous emissions from smelting and combustion and large enrichments of Zn and Cd suggest contribution from metallurgical industries. In London, coarse PM collected on the top of a building over 18 months display isotope signatures ranging between +0.03±0.04 and +0.49±0.02‰ for d66ZnIRMM and between +0.37±0.17 and +0.97±0.21‰ for d65CuAE633. Heavy Cu isotope signatures (up to +0.97±0.21‰) and higher enrichments and Cu/Sb ratios during winter time suggest important contribution from fossil fuel combustion. The positive d66ZnIRMM signatures are in good agreement with signatures characteristic for ore concentrates used for the production of tires and galvanised materials, suggesting non-exhaust emissions from vehicles as the main source of Zn

    Wood Nutrient-Water-Density Linkages Are Influenced by Both Species and Environment

    Get PDF
    Tropical trees store a large amount of nutrients in their woody tissues, thus triggering the question of what the functional association of these elements with other wood traits is. Given the osmotic activity of mineral elements such as potassium, sodium, and calcium, these elements should be strong candidates in mediating the water storing capacity in tropical trees. We investigated the role of wood nutrients in facilitating wood water storage in trees by using branch samples from 48 tropical tree species in South America and examined their associations with wood density (ρ). Wood density varied from 316 kg/m3 in Peru plots, where the soil nutrient status is relatively higher, to 908 kg/m3 in Brazil plots, where the nutrient availability is lower. Phosphorus content in wood varied significantly between plots with lowest values found in French Guiana (1.2 mol/m3) and plots with highest values found in Peru (43.6 mol/m3). Conversely, potassium in woody tissues showed a significant cross-species variation with Minquartia guianensis in Brazil showing the lowest values (8.8 mol/m3) and with Neea divaricata in Peru having the highest values (114 mol/m3). We found that lower wood density trees store more water in their woody tissues with cations, especially potassium, having a positive association with water storage. Specific relationships between wood cation concentrations and stem water storage potential nevertheless depend on both species’ identity and growing location. Tropical trees with increased water storage capacity show lower wood density and have an increased reliance on cations to regulate this reservoir. Our study highlights that cations play a more important role in tropical tree water relations than has previously been thought, with potassium being particularly important

    Mineralogy, geochemistry and classification of the new Smolenice iron meteorite from Slovakia

    Get PDF
    Abstract: A single 13.95 kg mass of a slightly weathered iron meteorite was found in the forest near Smolenice (48°31.2’N, 17°23.9’E; Trnava County, Slovakia). The bulk chemical composition (in wt. %) is: Fe 88.78, Ni 8.16, Co 0.38, P 0.05, S˂0.006 and (in μg/g): Ge˂0.18, Ir 1.67, Ga 1.80, Cr 87.3, Cu 135.1, As 4.52, Mo 5.82, Sn 1.53, W 0.56, Re 0.18, Ru 3.56, Rh 0.90, Pd 4.12, Pt 5.35, Au 1.19, Zn˂5, B˂0.68, Pb˂0.06. Bulk geochemistry, and Ni, Ga, Ge and Ir contents in particular suggest that the meteorite is an octahedrite belonging to the IVA group. The average thickness of kamacite lamellae is 0.22 mm, ranking it as fine octahedrite (Of). The mineral composition is simple, the most abundant minerals being iron (kamacite) (5.16–7.36 wt. % Ni) followed by taenite (16.73–33.93 wt. % Ni). Troilite nodules and daubréelite inclusions and thin veinlets are rare. The Widmanstätten pattern is uniform across the meteorite and plessite structure is developed locally. Analyses of cosmogenic radionuclides (14C and 26Al) indicate that the radius of the Smolenice meteorite could be 30±10 cm and its terrestrial age 11±2 kyr
    corecore