13 research outputs found

    Laser-supported partial laparoscopic nephrectomy for renal cell carcinoma without ischaemia time

    Get PDF
    BACKGROUND: To date, elective nephron-sparing surgery is an established method for the exstirpation of renal tumors. While open partial nephrectomy remains the reference standard of the management of renal masses, laparoscopic partial nephrectomy (LPN) continues to evolve. Conventional techniques include clamping the renal vessels risking ischaemic damage of the clamped organ. Thus, new techniques are needed that combine a sufficient tissue incision for exstirpation of the tumor with an efficient coagulation to assure haemostasis and abandon renal vessel clamping in LPN. Laser-excision of renal tumors during laparoscopic surgery seems to be a logical solution. METHODS: We performed nephron-sparing surgery without clamping of the renal vessels in 11 patients with a renal tumor in exophytic position (mean size 32 mm, ranging 8–45 mm) by laser-supported LPN. RESULTS: Regular ultrasound monitoring and insertion of a temporary drainage showed no evidence of postoperative hemorrhage. All tumors were removed with a histopathologically confirmed surrounding margin of normal renal tissue (R0 resection). Serum creatinine, hemoglobin, and hematocrit were nearly unaltered before and after surgery. CONCLUSIONS: The experience won in these patients have confirmed that laser-assisted LPN without clamping of the renal vessels could be a safe and gentle alternative to classic partial nephrectomy in patients with exophytic position of renal tumors

    C‐reactive protein flare‐response predicts long‐term efficacy to first‐line anti‐PD‐1‐based combination therapy in metastatic renal cell carcinoma

    Get PDF
    Objectives Immune checkpoint blockade (IO) has revolutionised the treatment of metastatic renal cell carcinoma (mRCC). Early C-reactive protein (CRP) kinetics, especially the recently introduced CRP flare-response phenomenon, has shown promising results to predict IO efficacy in mRCC, but has only been studied in second line or later. Here, we aimed to validate the predictive value of early CRP kinetics for 1st-line treatment of mRCC with αPD-1 plus either αCTLA-4 (IO+IO) or tyrosine kinase inhibitor (IO+TKI). Methods In this multicentre retrospective study, we investigated the predictive potential of early CRP kinetics during 1st-line IO therapy. Ninety-five patients with mRCC from six tertiary referral centres with either IO+IO (N = 59) or IO+TKI (N = 36) were included. Patients were classified as CRP flare-responders, CRP responders or non-CRP responders as previously described, and their oncological outcome was compared. Results Our data validate the predictive potential of early CRP kinetics in 1st-line immunotherapy in mRCC. CRP responders, especially CRP flare-responders, had significantly prolonged progression-free survival (PFS) compared with non-CRP responders (median PFS: CRP flare-responder: 19.2 months vs. responders: 16.2 vs. non-CRP responders: 5.6, P < 0.001). In both the IO+IO and IO+TKI subgroups, early CRP kinetics remained significantly associated with improved PFS. CRP flare-response was also associated with long-term response ≄ 12 months. Conclusions Early CRP kinetics appears to be a low-cost and easy-to-implement on-treatment biomarker to predict response to 1st-line IO combination therapy. It has potential to optimise therapy monitoring and might represent a new standard of care biomarker for immunotherapy in mRCC

    Data from: Sensory evolution of hearing in tettigoniids with differing communication systems

    No full text
    In Tettigoniidae (Orthoptera: Ensifera), hearing organs are essential in mate detection. Male tettigoniids usually produce calling songs by tegminal stridulation, whereas females approach the males phonotactically. This unidirectional communication system is the most common one among tettigoniids. In several tettigoniid lineages, females have evolved acoustic replies to the male calling song which constitutes a bidirectional communication system. The genus Poecilimon (Tettigoniidae: Phaneropterinae) is of special interest because the ancestral state of bidirectional communication, with calling males and responding females, has been reversed repeatedly to unidirectional communication. Acoustic communication is mediated by hearing organs that are adapted to the conspecific signals. Therefore, we analyse the auditory system in the Tettigoniidae genus Poecilimon for functional adaptations in three characteristics: (i) dimension of sound-receiving structures (tympanum and acoustic spiracle), (ii) number of auditory sensilla and (iii) hearing sensitivity. Profound differences in the auditory system correlate with uni- or bidirectional communication. Among the sound-receiving structures, the tympana scale with body size, whereas the acoustic spiracle, the major sound input structure, was drastically reduced in unidirectional communicating species. In the unidirectional P. ampliatus group, auditory sensilla are severely reduced in numbers, but not in the unidirectional P. propinquus group. Within the P. ampliatus group, the number of auditory sensilla is further reduced in P. intermedius which lost acoustic signalling due to parthenogenesis. The auditory sensitivity correlated with the size of the acoustic spiracle, as hearing sensitivity was better with larger spiracles, especially in the ultrasonic range. Our results show a significant reduction in auditory structures, shaped by the differing sex roles during mate detection

    JEvolBiol_Sensory evolution Poecilimon_Database

    No full text
    Includes the data from morphometric measurements on structures of the auditory system in different Poecilimon tettigoniids and the data from physiological measurements of hearing thresholds

    The Role of PSMA PET/CT in the Primary Diagnosis and Follow-Up of Prostate Cancer&mdash;A Practical Clinical Review

    No full text
    The importance of PSMA PET/CT in both primary diagnostics and prostate cancer recurrence has grown steadily since its introduction more than a decade ago. Over the past years, a vast amount of data have been published on the diagnostic accuracy and the impact of PSMA PET/CT on patient management. Nevertheless, a large heterogeneity between studies has made reaching a consensus difficult; this review aims to provide a comprehensive clinical review of the available scientific literature, covering the currently known data on physiological and pathological PSMA expression, influencing factors, the differences and pitfalls of various tracers, as well as the clinical implications in initial TNM-staging and in the situation of biochemical recurrence. This review has the objective of providing a practical clinical overview of the advantages and disadvantages of the examination in various clinical situations and the body of knowledge available, as well as open questions still requiring further research

    Pathogenic STX3 variants affecting the retinal and intestinal transcripts cause an early-onset severe retinal dystrophy in microvillus inclusion disease subjects

    Get PDF
    Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic—intestinal and retinal—disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy
    corecore