104 research outputs found

    Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds

    Get PDF
    Many insectivorous birds of the tropical rainforest understory, particularly terrestrial species, are prone to local extinctions in fragmented forests. We evaluated the hypothesis that vegetation structural changes in rainforest fragments reduce the availability of microhabitats used by terrestrial insectivores. Near Manaus, Brazil, we compared the vegetation in forest fragments to the vegetation in a continuous forest site where nine species of terrestrial insectivores were observed foraging. Our focal species included those that are extinction prone in fragments (Myrmornis torquata [Wing-banded Antbird], Grallaria varia [Variegated Antbird], Hylopezus macularius [Spotted Antpitta]), a fragmentation-tolerant species (Myrmothera campanisona [Thrush-like Antpitta]), and species that have and intermediate response (Myrmeciza ferruginea [Ferruginous-backed Antbird], Formicarius colma [Rufous-capped Anttrush], Formicarius analis [Black-faced Antthrush], Conopophaga aurita [Chestnut-belted Gnateater], and Corythopis torquata [Ringed Antpipit]). To quantify vegetation, we measured sixteen habitat variables in 8-m radius plots where birds were observed foraging as well as random points in continuous forest and forest fragments of 1-, 10-, and 100-ha. Four principal components were produced from a principal component analysis and we selected a variable (leaf litter depth, plant cover 3-10. m, density of plants 1-2. m, and plant cover >20. m) from each principal component for our fragment vs continuous forest comparisons. Using Markov chain Monte Carlo (MCMC) simulation, we estimated the probabilities that the density of plants 1-2. m, proportion of plant cover 3-10. m, and leaf litter depth increased with decreasing fragment area and also exceeded the values associated with fragmentation-sensitive species. We also tested the prediction that plant cover >20. m decreased in forest fragments and that those sites became more open than typical sites used by our focal species. Our predictions were strongly supported: decreasing fragment size was correlated with increasing density of tall plants, increasing mid-story vegetation cover, decreased canopy cover, and increasing leaf litter depth. Even if our focal species are able to disperse to small forest fragments, our results suggest that they may not find enough appropriate habitat. © 2015 Elsevier Ltd

    The mechanisms and processes of connection: developing a causal chain model capturing impacts of receiving recorded mental health recovery narratives.

    Get PDF
    BACKGROUND: Mental health recovery narratives are a core component of recovery-oriented interventions such as peer support and anti-stigma campaigns. A substantial number of recorded recovery narratives are now publicly available online in different modalities and in published books. Whilst the benefits of telling one's story have been investigated, much less is known about how recorded narratives of differing modalities impact on recipients. A previous qualitative study identified connection to the narrator and/or to events in the narrative to be a core mechanism of change. The factors that influence how individuals connect with a recorded narrative are unknown. The aim of the current study was to characterise the immediate effects of receiving recovery narratives presented in a range of modalities (text, video and audio), by establishing the mechanisms of connection and the processes by which connection leads to outcomes. METHOD: A study involving 40 mental health service users in England was conducted. Participants were presented with up to 10 randomly-selected recovery narratives and were interviewed on the immediate impact of each narrative. Thematic analysis was used to identify the mechanisms of connection and how connection leads to outcome. RESULTS: Receiving a recovery narrative led participants to reflect upon their own experiences or those of others, which then led to connection through three mechanisms: comparing oneself with the narrative and narrator; learning about other's experiences; and experiencing empathy. These mechanisms led to outcomes through three processes: the identification of change (through attending to narrative structure); the interpretation of change (through attending to narrative content); and the internalisation of interpretations. CONCLUSIONS: This is the first study to identify mechanisms and processes of connection with recorded recovery narratives. The empirically-based causal chain model developed in this study describes the immediate effects on recipients. This model can inform selection of narratives for use in interventions, and be used to support peer support workers in recounting their own recovery narratives in ways which are maximally beneficial to others

    New Mouse Lines for the Analysis of Neuronal Morphology Using CreER(T)/loxP-Directed Sparse Labeling

    Get PDF
    BACKGROUND: Pharmacologic control of Cre-mediated recombination using tamoxifen-dependent activation of a Cre-estrogen receptor ligand binding domain fusion protein [CreER(T)] is widely used to modify and/or visualize cells in the mouse. METHODS AND FINDINGS: We describe here two new mouse lines, constructed by gene targeting to the Rosa26 locus to facilitate Cre-mediated cell modification. These lines should prove particularly useful in the context of sparse labeling experiments. The R26rtTACreER line provides ubiquitous expression of CreER under transcriptional control by the tetracycline reverse transactivator (rtTA); dual control by doxycycline and tamoxifen provides an extended dynamic range of Cre-mediated recombination activity. The R26IAP line provides high efficiency Cre-mediated activation of human placental alkaline phosphatase (hPLAP), complementing the widely used, but low efficiency, Z/AP line. By crossing with mouse lines that direct cell-type specific CreER expression, the R26IAP line has been used to produce atlases of labeled cholinergic and catecholaminergic neurons in the mouse brain. The R26IAP line has also been used to visualize the full morphologies of retinal dopaminergic amacrine cells, among the largest neurons in the mammalian retina. CONCLUSIONS: The two new mouse lines described here expand the repertoire of genetically engineered mice available for controlled in vivo recombination and cell labeling using the Cre-lox system

    Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes

    Get PDF
    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    French-Canadian Literature in Translation

    No full text

    L’écrivain clandestin

    No full text

    Graham Greene: An Annotated Bibliography of Criticism by A. F. Cassis

    No full text

    Literary Translation in Canada: A Survey

    No full text
    • …
    corecore