160 research outputs found

    REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence

    Get PDF
    Very few studies deal with REE (rare earth element) mobility within the system soil–soil solution–streamwater. In this article, we try to characterize the fractionation and the migration of the REE in a granite-derived soil system located in a small catchment of the Vosges mountains. ICP-MS and TIMS measurements were performed on both solid samples (“fresh” granite, soil, and suspended load of the stream) and waters (soil solutions, springwater, and streamwater) to determine their respective REE concentrations and Sr and Nd isotopic compositions. The PAAS-normalized REE pattern of the bedrock is characterized by a strong depletion in HREE (heavy REE) and a negative Eu anomaly (0.46). Similarly, the granite-normalized REE distribution patterns of the soil samples show HREE depletions that become more important with decreasing depth. The correlative behavior between P2O5, Th, and REE with depth indicates that, besides apatite, other phosphate minerals such as monazite are the most important phases controlling the Th and REE budget in the soil profile. On the other hand, at greater depth, zircon seems to be another important mineral phase controlling especially the HREE enrichment as shown by the positive relationship between Zr content and the Yb/Ho ratio. Different grain size fractions show similar REE distribution patterns and are only weakly fractionated, compared with bulk soil sample. However, the finest fraction (0–20 mm) is more enriched in Sr and REE, suggesting a stronger concentration of REE-carrying minerals in this fraction. The suspended and dissolved load of the stream show as a whole an enrichment in HREE if compared with the granite or with the different soil samples. However, compared with the uppermost soil samples, the suspended load is significantly more enriched in HREE. Its REE distribution pattern is more similar to that of the finest fraction of the deeper soil sample and to the “fresh” granite. Thus, most probably the REE of the suspended load originated from a source with REE characteristics found in the deep soil horizons. This source might have been situated in the uppermost soil profile, which is actually REE depleted. The weathering process can be compared with a leaching experiment where the waters correspond to the leachate and the soil to the residual phase of the granite. The Sr isotope data indicate that the suspended load originates from the finest soil fraction. The Sr and Nd isotopic data of the suspended load suggest that it contains up to 3% Sr and Nd from apatite and up to 97% from feldspar. Most of the Sr and Nd in the waters originate from apatite leaching or dissolution

    Distribution and origin of major and trace elements (particularly REE, U and Th) into labile and residual phases in an acid soil profile (Vosges Mountains, France).

    Get PDF
    A seven step sequential extraction procedure has been conducted on a podzolic soil profile from the Vosges Mountains in order to determine the ability of several elements to be released to the environment. Very little Si, K and Al were extractable ( 10% of the total soil concentration) of Ca, P, metals (Fe, Pb), REE and actinides (Th, U) could be leached. For each element, preferential binding sites can be recognized. High recovery of P and Ca in the acid soluble fraction (AS) suggests that phosphate minerals are highly involved in this step of the extraction. Organic matter appears to control the adsorption of Ca, Fe, Th, U and REE, even at depths in the soil profile where organic matter content is particularly low (0.5%). Weak acid leaching experiments (with HCl and acid acetic 0.001 N) were also performed in order to characterize the origin of the insoluble material in this soil profile. The leachable REE distributions indicate that a large part of the labile REE in the surface horizon has an atmospheric origin whereas at greater depth phosphate mineral (apatite) alteration is the main factor controlling REE release in the leachate. Our study further suggests that adsorbed material holding actinides and REE are not strictly the same. So, caution should be taken when using REE as analogues for actinides in soils systems

    Characterization and migration of atmospheric REE in soils and surface waters

    Get PDF
    Rainwater and snow collected from three different sites in France (Vosges Mountains, French Alps and Strasbourg) show more or less similar shapes of their REE distribution patterns. Rainwater from Strasbourg is the most REE enriched sample, whereas precipitations from the two mountainous, less polluted catchments are less REE enriched and have concentrations close to seawater. They are all strongly LREE depleted. Different water samples from an Alpine watershed comprising snow, interstitial, puddle and streamwater show similar REE distributions with LREE enrichment (rainwater normalized) but MREE and HREE depletion. In this environment, where water transfer from the soil to the river is very quick due to the low thickness of the soils, it appears that REE in streamwater mainly originate from atmospheric inputs. Different is the behaviour of the REE in the spring- and streamwaters from the Vosges Mountains. These waters of long residence time in the deep soil horizons react with soil and bedrock REE carrying minerals and show especially significant negative Eu anomalies compared to atmospheric inputs. Their Sr and Nd isotopic data suggest that most of the Sr and Nd originate from apatite leaching or dissolution. Soil solutions and soil leachates from the upper soil horizons due to alteration processes strongly depleted in REE carrying minerals, have REE distribution patterns close to those of lichens and throughfall. Throughfall is slightly more enriched especially in light REE than filtered rainwater probably due to leaching of atmospheric particles deposited on the foliage and also to leaf excretion. Data suggest that Sr and Nd isotopes of the soil solutions in the upper soil horizons originate from two different sources: 1) An atmospheric source with fertilizer, dust and seawater components and 2) A source mainly determined by mineral dissolution in the soil. These two different sources are also recognizable in the Sr and Nd isotopic composition of the tree’s throughfall solution. The atmospheric contributions of Sr and Nd to throughfall and soil solution are of 20 to 70 and 20%, respectively. In springwater, however, the atmospheric Sr and REE contribution is not detectable

    Origin and fluxes of atmospheric REE entering an ombrotrophic peat bog in Black Forest (SW Germany): Evidence from snow, lichens and mosses

    Get PDF
    The fate of the Rare Earth Elements (REE) were investigated in different types of archives of atmospheric deposition in the Black Forest, Southern Germany: (1) a 70 cm snow pack collected on the domed part of a raised bog and representing 2 months of snow accumulation, (2) a snow sample collected close to the road about 500 m from the peat bog, (3) two species of lichens and (4) a peat profile representing 400 years of peat accumulation as well as a “preanthropogenic” sample and the living moss layer from the top of the core. REE concentrations in peat are significantly correlated to Ti which is a lithogenic conservative element suggesting that REE are immobile in peat bog environments. Snow, lichens and peat samples show similar PAAS (Post Archean Australian Shale) normalized REE distributions suggesting that the complete atmospheric REE signal is preserved in the peat profile. However, the annual flux of REE accumulated by the peat is ca. 10 times greater than that of the bulk winter flux of REE. This difference probably indicates that the REE concentrations in the snowpack are not representative of the average REE flux over the whole year. Despite the pronounced geological differences between this site (granite host-rock) and a previously studied peat bog in Switzerland (limestone host-rock) similar REE distribution patterns and accumulation rates were found at both sites. Given that both sites confirm an Upper Continental Crust signature, the data suggests both sites are influenced by regional and not local, soil-derived lithogenic aerosols

    Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina

    Get PDF
    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr–Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production

    Miocene shallow-water limestones from SĂŁo Nicolau (Cabo Verde): Caribbean-type benthic fauna and time constraints for volcanism

    Get PDF
    Shallow-water limestones of presumed Late Cretaceous and Eocene age, interbedded with basaltic lavas, were described by earlier authors from SĂŁo Nicolau in the northwestern part of the Cabo Verde archipelago. If confirmed, these ages would imply late Mesozoic shallow-marine and subaerial volcanic activity in the Cabo Verde archipelago, and document a geological history very different from that known so far from other Cabo Verde Islands, from which no subaerial volcanic activity before the mid-Cenozoic is known. Our re-investigation of the foraminiferal fauna indicates a Late Miocene age for the presumed Late Cretaceous and Eocene limestones. The hypothesis of a long-lived hot spot, active by the Early Cretaceous, and of a major island-building stage in the Cabo Verde Islands during this period, is therefore not supported by the present bio- or chronostratigraphic dat

    d13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina)

    Get PDF
    The main Patagonian rivers (Colorado, Negro, Chubut, Deseado, Coyle, Chico, Santa Cruz and Gallegos) were sampled between September 1995 and November 1998 to determine their chemical and isotopic compositions, the origins of the suspended and dissolved river loads and their inputs to the South Atlantic Ocean. This paper focuses on the dissolved inorganic carbon (DIC) transport and its υ13C isotopic signature. The υ13CDIC values vary between 12Ð8 and 1Ð8‰ and allow one to distinguish two river groups: (i) the Colorado, Negro, Chubut and Santa Cruz, which display the highest values and the lowest seasonal variations; (ii) the Deseado, Coyle, Chico and Gallegos, which show the lowest values and the highest seasonal variations. For the first group, υ13CDIC is mainly controlled by important exchanges between the river waters and atmospheric CO2, due to the presence of lakes and dams. For the second group, υ13CDIC also appears to be controlled by the oxidation of organic carbon, showing a negative relationship between υ13CDIC and the dissolved organic carbon. These biogeochemical processes interfere with the contribution of carbonate and silicate weathering to the riverine DIC and do not allow use of υ13CDIC alone to distinguish these contributions. The annual DIC flux exported by Patagonian Rivers to the South Atlantic Ocean averages 621 Ă° 109 g. of C, i.e. a specific yield of 2Ð7 g m2 year1. The mean υ13CDIC can be estimated to 4Ð9‰, which is high compared with other rivers of the world

    Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives

    Get PDF
    In a peat bog from Black Forest, Southern Germany, the rate of atmospheric Pb accumulation was quantified using a peat core dated by 210Pb and 14C. The most recent Pb accumulation rate (2.5 mg m−2 y−1) is similar to that obtained from a snowpack on the bog surface, which was sampled during the winter 2002 (1 to 4 mg m−2 y−1). The Pb accumulation rates recorded by the peat during the last 25 yr are also in agreement with published values of direct atmospheric fluxes in Black Forest. These values are 50 to 200 times greater than the “natural” average background rate of atmospheric Pb accumulation (20 ÎŒg m−2 y−1) obtained using peat samples from the same bog dating from 3300 to 1300 cal. yr B.C. The isotopic composition of Pb was measured in both the modern and ancient peat samples as well as in the snow samples, and clearly shows that recent inputs are dominated by anthropogenic Pb. The chronology and isotopic composition of atmospheric Pb accumulation recorded by the peat from the Black Forest is similar to the chronologies reported earlier using peat cores from various peat bogs as well as herbarium samples of Sphagnum and point to a common Pb source to the region for the past 150 years. In contrast, Pb contamination occurring before 1850 in southwestern Germany, differs from the record published for Switzerland mainly due to the mining activity in Black Forest. Taken together, the results show that peat cores from ombrotrophic bogs can yield accurate records of atmospheric Pb deposition, provided that the cores are carefully collected, handled, prepared, and analysed using appropriate methods

    The impact of vegetation on fractionation of rare earth elements(REE) during water–rock interaction

    Get PDF
    Previous studies on waters of a streamlet in the Vosges mountains (eastern France) have shown that Sr and rare earth elements (REE) principally originate from apatite dissolution during weathering. However, stream water REE patterns normalized to apatite are still depleted in light REE (LREE, La–Sm) pointing to the presence of an additional LREE depleting process. Speciation calculations indicate that complexation cannot explain this additional LREE depletion. In contrast, vegetation samples are strongly enriched in LREE compared to water and their Sr and Nd isotopic compositions are comparable with those of apatite and waters. Thus, the preferential LREE uptake by the plants at the root–water–soil (apatite) interface might lead to an additional LREE depletion of the waters in the forested catchment. Mass balance calculations indicate that the yearly LREE uptake by vegetation is comparable with the LREE export by the streamlet and, therefore, might be an important factor controlling the LREE depletion in river waters
    • 

    corecore