80 research outputs found

    The Calibrations of Space Shuttle Main Engines High Pressure Transducers

    Get PDF
    Previously, high pressure transducers that were used on the Space Shuttles Main Engine (SSME) exhibited a severe drift after being tested on the SSME. The Experimental Testing Technology Division (ETTD) designed some new transducers that would not exhibit a severe drift over a short period of time. These transducers were calibrated at the Test Bed at Marshall Space Flight Center (MSFC). After the high pressure transducers were calibrated, the transducers were placed on the SSME and fired. The transducers were then sent to the NASA LaRC to be recalibrated. The main objectives of the recalibrations was to make sure that the transducers possessed the same qualities as they did before they were fired on the SSME. Other objectives of the project were to determine the stability of the transducers and to determine whether the transducers exhibited a severe drift

    Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation.

    Get PDF
    Identifying the forces that drive proteins to misfold and aggregate, rather than to fold into their functional states, is fundamental to our understanding of living systems and to our ability to combat protein deposition disorders such as Alzheimer's disease and the spongiform encephalopathies. We report here the finding that the balance between hydrophobic and hydrogen bonding interactions is different for proteins in the processes of folding to their native states and misfolding to the alternative amyloid structures. We find that the minima of the protein free energy landscape for folding and misfolding tend to be respectively dominated by hydrophobic and by hydrogen bonding interactions. These results characterise the nature of the interactions that determine the competition between folding and misfolding of proteins by revealing that the stability of native proteins is primarily determined by hydrophobic interactions between side-chains, while the stability of amyloid fibrils depends more on backbone intermolecular hydrogen bonding interactions

    What kind of expertise is needed for low energy construction

    Get PDF
    The construction industry is responsible for 40% of European Union (EU) end-use emissions but addressing this is problematic, as evident from the performance gap between design intention and on-site energy performance. There is a lack of the expertise needed for low energy construction (LEC) in the UK as the complex work processes involved require ‘energy literacy’ of all construction occupations, high qualification levels, broad occupational profiles, integrated teamworking, and good communication . This research identifies the obstacles to meeting these requirements, the nature of the expertise needed to break down occupational divisions and bridge those interfaces where the main heat losses occur, and the transition pathway implied. Obstacles include a decline in the level, breadth and quality of construction vocational education and training (VET), the lack of a learning infrastructure on sites, and a fragmented employment structure. To overcome these and develop enhanced understanding of LEC requires a transformation of the existing structure of VET provision and construction employment and a new curriculum based on a broader concept of agency and backed by rigorous enforcement of standards. This can be achieved through a radical transition pathway rather than market-based solutions to a low carbon future for the construction sector

    An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior

    No full text
    Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2lmRNA, encoding a component of a histone methyltransferase complex. We therefore examined genome-wide changes in trimethylation of histone H3 on Lys4 (H3K4me3), a mark induced by the Ash2l complex associated with increased gene transcription. A large proportion of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4me3. Knockdown of Ash2l or Mef2c abolished nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuated nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimicked nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Evaluation of the prognostic value of systemic inflammation and socioeconomic deprivation in patients with resectable colorectal liver metastases.

    Full text link
    Background: There is increasing evidence that the presence of a pre-operative systemic inflammatory response (SIR) independently predicts poor long-term outcome in patients with colorectal cancer (CRC). Socioeconomic deprivation was reported to correlate with the presence of the SIR and to independently predict poor outcome following primary CRC resection. The aim of this study was to determine the prognostic value of pre-operative systemic inflammatory biomarkers and socioeconomic deprivation in patients undergoing resection of colorectal liver metastases (CLM) and to examine correlations between these variables in this context. Patients and methods: Clinicopathological data, including the Memorial Sloan-Kettering Cancer Centre Clinical Risk Score (CRS), were obtained from a prospectively maintained database for 174 patients who underwent hepatectomy for CLM between January 2000 and December 2005 at a single United Kingdom (UK) tertiary referral hepatobiliary centre. Inflammatory biomarkers (total and differential leucocyte counts, neutrophil–lymphocyte ratio, platelet count, haemoglobin, and serum albumin) were measured from routine pre-operative blood tests. Socioeconomic deprivation was measured using the Carstairs deprivation score. Results: On multivariable analysis, poor CRS (3–5), high neutrophil count (>6.0 × 109/l) and low serum albumin (<40 g/dl) were the only independent predictors of shortened overall survival following metastasectomy, with neutrophil count representing the greatest relative risk of death. These factors were also the only independent predictors of shortened disease-free survival following hepatectomy. Socioeconomic deprivation was associated with neither systemic inflammation nor long-term outcome in this context. Conclusions: The presence of a pre-operative systemic inflammatory response, but not socioeconomic deprivation, independently predicts shortened survival following resection of CLM
    corecore