58 research outputs found

    Action and function of Akkermansia muciniphila in microbiome ecology, health and disease

    Get PDF
    The discovery of Akkermansia muciniphila has opened new avenues for the use of this abundant intestinal symbiont in next generation therapeutic products, as well as targeting microbiota dynamics. A. muciniphila is known to colonize the mucosal layer of the human intestine where it triggers both host metabolic and immune responses. A. muciniphila is particularly effective in increasing mucus thickness and increasing gut barrier function. As a result host metabolic markers ameliorate. The mechanism of host regulation is thought to involve the outer membrane composition, including the type IV pili of A. muciniphila, that directly signal to host immune receptors. At the same time the metabolic activity of A. muciniphila leads to the production of short chain fatty acids that are beneficial to the host and microbiota members. This contributes to host-microbiota and microbe-microbe syntrophy The mucolytic activity and metabolite production make A. muciniphila a key species in the mucus layer, stimulating beneficial mucosal microbial networks. This well studied member of the microbiota has been studied in three aspects that will be further described in this review: i) A. muciniphila characteristics and mucin adaptation, ii) its role as key species in the mucosal microbiome, and iii) its role in host health. (C) 2017 Published by Elsevier Ltd.Peer reviewe

    Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria

    Get PDF
    Knowledge of the functional roles and interspecies interactions are crucial for improving our understanding of the human intestinal microbiome in health and disease. However, the complexity of the human intestinal microbiome and technical challenges in investigating it pose major challenges. In this proof-of-concept study, we rationally designed, assembled and experimentally tested a synthetic Diet-based Minimal Microbiome (Db-MM) consisting of ten core intestinal bacterial species that together are capable of efficiently converting dietary fibres into short chain fatty acids (SCFAs). Despite their genomic potential for metabolic competition, all ten bacteria coexisted during growth on a mixture of dietary fibres, including pectin, inulin, xylan, cellobiose and starch. By integrated analyses of metabolite production, community composition and metatranscriptomics-based gene expression data, we identified interspecies metabolic interactions leading to production of key SCFAs such as butyrate and propionate. While public goods, such as sugars liberated from colonic fibres, are harvested by non-degraders, some species thrive by cross-feeding on energetically challenging substrates, including the butyrogenic conversion of acetate and lactate. Using a reductionist approach in an in-vitro system combined with functional measurements, our study provides key insights into the complex interspecies metabolic interactions between core intestinal bacterial species.Peer reviewe

    Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach

    Get PDF
    Host glycans are paramount in regulating the symbiotic relationship between humans and their gut bacteria. The constant flux of host-secreted mucin at the mucosal layer creates a steady niche for bacterial colonization. Mucin degradation by keystone species subsequently shapes the microbial community. This study investigated the transcriptional response during mucin-driven trophic interaction between the specialised mucin-degrader Akkermansia muciniphila and a butyrogenic gut commensal Anaerostipes caccae. A. muciniphila monocultures and co-cultures with non-mucolytic A. caccae from the Lachnospiraceae family were grown anaerobically in minimal media supplemented with mucin. We analysed for growth, metabolites (HPLC analysis), microbial composition (quantitative reverse transcription PCR), and transcriptional response (RNA-seq). Mucin degradation by A. muciniphila supported the growth of A. caccae and concomitant butyrate production predominantly via the acetyl-CoA pathway. Differential expression analysis (DESeq 2) showed the presence of A. caccae induced changes in the A. muciniphila transcriptional response with increased expression of mucin degradation genes and reduced expression of ribosomal genes. Two putative operons that encode for uncharacterised proteins and an efflux system, and several two-component systems were also differentially regulated. This indicated A. muciniphila changed its transcriptional regulation in response to A. caccae. This study provides insight to understand the mucin-driven microbial ecology using metatranscriptomics. Our findings show that the expression of mucolytic enzymes by A. muciniphila increases upon the presence of a community member. This could indicate its role as a keystone species that supports the microbial community in the mucosal environment by increasing the availability of mucin sugars.Peer reviewe

    Development of omics-based protocols for the microbiological characterization of multi-strain formulations marketed as probiotics : the case of VSL#3

    Get PDF
    The growing commercial interest in multi-strain formulations marketed as probiotics has not been accompanied by an equal increase in the evaluation of quality levels of these biotechnological products. The multi-strain product VSL#3 was used as a model to setup a microbiological characterization that could be extended to other formulations with high complexity. Shotgun metagenomics by deep Illumina sequencing was applied to DNA isolated from the commercial VSL#3 product to confirm strains identity safety and composition. Single-cell analysis was used to evaluate the cell viability, and beta-galactosidase and urease activity have been used as marker to monitor the reproducibility of the production process. Similarly, these lots were characterized in detail by a metaproteomics approach for which a robust protein extraction protocol was combined with advanced mass spectrometry. The results identified over 1600 protein groups belonging to all strains present in the VSL#3 formulation. Of interest, only 3.2 % proteins showed significant differences mainly related to small variations in strain abundance. The protocols developed in this study addressed several quality criteria that are relevant for marketed multi-strain products and these represent the first efforts to define the quality of complex probiotic formulations such as VSL#3.Peer reviewe

    A Continuous Battle for Host-Derived Glycans Between a Mucus Specialist and a Glycan Generalist in vitro and in vivo

    Get PDF
    The human gastrointestinal tract is colonized by a diverse microbial community, which plays a crucial role in human health. In the gut, a protective mucus layer that consists of glycan structures separates the bacteria from the host epithelial cells. These host-derived glycans are utilized by bacteria that have adapted to this specific compound in the gastrointestinal tract. Our study investigated the close interaction between two distinct gut microbiota members known to use mucus glycans, the generalist Bacteroides thetaiotaomicron and the specialist Akkermansia muciniphila in vitro and in vivo. The in vitro study, in which mucin was the only nutrient source, indicated that B. thetaiotaomicron significantly upregulated genes coding for Glycoside Hydrolases (GHs) and mucin degradation activity when cultured in the presence of A. muciniphila. Furthermore, B. thetaiotaomicron significantly upregulated the expression of a gene encoding for membrane attack complex/perforin (MACPF) domain in co-culture. The transcriptome analysis also indicated that A. muciniphila was less affected by the environmental changes and was able to sustain its abundance in the presence of B. thetaiotaomicron while increasing the expression of LPS core biosynthesis activity encoding genes (O-antigen ligase, Lipid A and Glycosyl transferases) as well as ABC transporters. Using germ-free mice colonized with B. thetaiotaomicron and/or A. muciniphila, we observed a more general glycan degrading profile in B. thetaiotaomicron while the expression profile of A. muciniphila was not significantly affected when colonizing together, indicating that two different nutritional niches were established in mice gut. Thus, our results indicate that a mucin degrading generalist adapts to its changing environment, depending on available carbohydrates while a mucin degrading specialist adapts by coping with competing microorganism through upregulation of defense related genes.Peer reviewe

    Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro

    Get PDF
    Akkermansia muciniphila is a well-studied anaerobic bacterium specialized in mucus degradation and associated with human health. Because of the structural resemblance of mucus glycans and free human milk oligosaccharides (HMOs), we studied the ability of A. muciniphila to utilize human milk oligosaccharides. We found that A. muciniphila was able to grow on human milk and degrade HMOs. Analyses of the proteome of A. muciniphila indicated that key-glycan degrading enzymes were expressed when the bacterium was grown on human milk. Our results display the functionality of the key-glycan degrading enzymes (alpha -l-fucosidases, beta -galactosidases, exo-alpha -sialidases and beta -acetylhexosaminidases) to degrade the HMO-structures 2 ' -FL, LNT, lactose, and LNT2. The hydrolysation of the host-derived glycan structures allows A. muciniphila to promote syntrophy with other beneficial bacteria, contributing in that way to a microbial ecological network in the gut. Thus, the capacity of A. muciniphila to utilize human milk will enable its survival in the early life intestine and colonization of the mucosal layer in early life, warranting later life mucosal and metabolic health.Peer reviewe

    Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1(-/7) mice

    Get PDF
    BackgroundThe use of Akkermansia muciniphila as potential therapeutic intervention is receiving increasing attention. Health benefits attributed to this bacterium include an improvement of metabolic disorders and exerting anti-inflammatory effects. The abundance of A. muciniphila is associated with a healthy gut in early mid- and later life. However, the effects of A. muciniphila on a decline in intestinal health during the aging process are not investigated yet. We supplemented accelerated aging Ercc1(-/7) mice with A. muciniphila for 10weeks and investigated histological, transcriptional and immunological aspects of intestinal health.ResultsThe thickness of the colonic mucus layer increased about 3-fold after long-term A. muciniphila supplementation and was even significantly thicker compared to mice supplemented with Lactobacillus plantarum WCFS1. Colonic gene expression profiles pointed towards a decreased expression of genes and pathways related to inflammation and immune function, and suggested a decreased presence of B cells in colon. Total B cell frequencies in spleen and mesenteric lymph nodes were not altered after A. muciniphila supplementation. Mature and immature B cell frequencies in bone marrow were increased, whereas B cell precursors were unaffected. These findings implicate that B cell migration rather than production was affected by A. muciniphila supplementation. Gene expression profiles in ileum pointed toward a decrease in metabolic- and immune-related processes and antimicrobial peptide production after A. muciniphila supplementation. Besides, A. muciniphila decreased the frequency of activated CD80(+)CD273(-) B cells in Peyer's patches. Additionally, the increased numbers of peritoneal resident macrophages and a decrease in Ly6C(int) monocyte frequencies in spleen and mesenteric lymph nodes add evidence for the potentially anti-inflammatory properties of A. muciniphila.ConclusionsAltogether, we show that supplementation with A. muciniphila prevented the age-related decline in thickness of the colonic mucus layer and attenuated inflammation and immune-related processes at old age. This study implies that A. muciniphila supplementation can contribute to a promotion of healthy aging.Peer reviewe

    Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function

    Get PDF
    Gut barrier function is key in maintaining a balanced response between the host and its microbiome. The microbiota can modulate changes in gut barrier as well as metabolic and inflammatory responses. This highly complex system involves numerous microbiota-derived factors. The gut symbiont Akkermansia muciniphila is positively correlated with a lean phenotype, reduced body weight gain, amelioration of metabolic responses and restoration of gut barrier function by modulation of mucus layer thickness. However, the molecular mechanisms behind its metabolic and immunological regulatory properties are unexplored. Herein, we identify a highly abundant outer membrane pili-like protein of A. muciniphila MucT that is directly involved in immune regulation and enhancement of trans-epithelial resistance. The purified Amuc_1100 protein and enrichments containing all its associated proteins induced production of specific cytokines through activation of Toll-like receptor (TLR) 2 and TLR4. This mainly leads to high levels of IL-10 similar to those induced by the other beneficial immune suppressive microorganisms such as Faecalibacterium prausnitzii A2-165 and Lactobacillus plantarum WCFS1. Together these results indicate that outer membrane protein composition and particularly the newly identified highly abundant pili-like protein Amuc_1100 of A. muciniphila are involved in host immunological homeostasis at the gut mucosa, and improvement of gut barrier function.Peer reviewe

    Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study

    Get PDF
    Objective Environmental factors driving the development of type 1 diabetes (T1D) are still largely unknown. Both animal and human studies have shown an association between altered fecal microbiota composition, impaired production of short-chain fatty acids (SCFA) and T1D onset. However, observational evidence on SCFA and fecal and oral microbiota in adults with longstanding T1D vs healthy controls (HC) is lacking. Research design and methods We included 53 T1D patients without complications or medication and 50 HC matched for age, sex and BMI. Oral and fecal microbiota, fecal and plasma SCFA levels, markers of intestinal inflammation (fecal IgA and calprotectin) and markers of low-grade systemic inflammation were measured. Results Oral microbiota were markedly different in T1D (eg abundance of Streptococci) compared to HC. Fecal analysis showed decreased butyrate producing species in T1D and less butyryl-CoA transferase genes. Also, plasma levels of acetate and propionate were lower in T1D, with similar fecal SCFA. Finally, fecal strains Christensenella and Subdoligranulum correlated with glycemic control, inflammatory parameters and SCFA. Conclusions We conclude that T1D patients harbor a different amount of intestinal SCFA (butyrate) producers and different plasma acetate and propionate levels. Future research should disentangle cause and effect and whether supplementation of SCFA-producing bacteria or SCFA alone can have disease-modifying effects in T1D.Peer reviewe
    • …
    corecore