15 research outputs found

    Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies

    Get PDF
    A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a β€œcosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions

    Mining the LIPG Allelic Spectrum Reveals the Contribution of Rare and Common Regulatory Variants to HDL Cholesterol

    Get PDF
    Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5β€² UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5β€² UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci

    Dense genotyping of candidate gene loci identifies variants associated with high-density lipoprotein cholesterol.

    No full text
    BACKGROUND: Plasma levels of high density lipoprotein cholesterol (HDL-C) are known to be heritable, but only a fraction of the heritability is explained. We used a high density genotyping array containing SNPs from HDL-C candidate genes selected on known biology of HDL-C metabolism, mouse genetic studies, and human genetic association studies. SNP selection was based on tagging-SNPs but also included low-frequency nonsynonymous SNPs. METHODS AND RESULTS: Association analysis in a cohort containing extremes of HDL-C (case-control, n=1733) provided a discovery phase, with replication in three additional populations for a total meta-analysis in 7,857 individuals. We replicated the majority of loci identified through genome wide association studies and present on the array (including ABCA1, APOA1/C3/A4/A5, APOB, APOE/C1/C2, CETP, CTCF-PRMT8, FADS1/2/3, GALNT2, LCAT, LILRA3, LIPC, LIPG, LPL, LRP4, SCARB1, TRIB1, ZNF664), and provide evidence suggestive of association in several previously unreported candidate gene loci (including ABCG1, GPR109A/B/81, NFKB1, PON1/2/3/4). There was evidence for multiple, independent association signals in five loci, including association with low frequency nonsynonymous variants. CONCLUSIONS: Genetic loci associated with HDL-C are likely to harbor multiple, independent causative variants, frequently with opposite effects on the HDL-C phenotype. Cohorts composed of extreme individuals may be efficiently used in a case-control discovery of quantitative traits

    Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans

    No full text
    Elevated plasma concentrations of HDL cholesterol (HDL-C) are associated with protection from atherosclerotic cardiovascular disease. Animal models indicate that decreased expression of endothelial lipase (LIPG) is inversely associated with HDL-C levels, and genome-wide association studies have identified LIPG variants as being associated with HDL-C levels in humans. We hypothesized that loss-of-function mutations in LIPG may result in elevated HDL-C and therefore performed deep resequencing of LIPG exons in cases with elevated HDL-C levels and controls with decreased HDL-C levels. We identified a significant excess of nonsynonymous LIPG variants unique to cases with elevated HDL-C. In vitro lipase activity assays demonstrated that these variants significantly decreased endothelial lipase activity. In addition, a meta-analysis across 5 cohorts demonstrated that the low-frequency Asn396Ser variant is significantly associated with increased HDL-C, while the common Thr111Ile variant is not. Functional analysis confirmed that the Asn396Ser variant has significantly decreased lipase activity both in vitro and in vivo, while the Thr111Ile variant has normal lipase activity. Our results establish that loss-of-function mutations in LIPG lead to increased HDL-C levels and support the idea that inhibition of endothelial lipase may be an effective mechanism to raise HDL-C
    corecore