142 research outputs found
Solar-Powered Rankine Cycle Assisted by an Innovative Calcium Looping Process as an Energy Storage System
Solar energy is an intermittent resource, and thus an energy storage system is required for practical applications of the collected solar irradiance. This work deals with the integration of a thermo-chemical energy storage (TCES) system based on the calcium looping (CaL) process with a concentrated solar tower power (CSP) plant. The objective of this work is the integration of a conventional 320 MWe Rankine cycle with a direct calcination for energy harvesting. Particularly, this work addresses the use of CO2 as the working fluid of a compressed-gas energy storage (CGES) system for hybrid energy storage with the CaL process. The hybrid TC/CG-ES (thermo-chemical/compressed-gas energy storage) system can increase the competitiveness of the CSP with respect to conventional fossil-based power plants leading to a reduction in CO2 emissions. The thermal integration with the calcium looping (CaL) system is optimized by means of the pinch analysis methodology. The obtained results show a reduction in the electrical efficiency of about four percentage points with respect to the conventional Rankine power cycle without the CSP unit: the net electrical efficiency reduces from 43.7% to 39.5% while the global (thermal and electrical) efficiency of the plant reaches the peak value of 51.5% when low enthalpy energy is recovered (e.g., district heating network, district cooling network). This paper highlights the importance of the thermochemical CaO based material. With a conversion of CaO to CaCO3 of 80% the storage efficiency is defined as the ratio of the energy released during the carbonation and the CO2 expansion to the energy collected by the solar field and required during the CO2 compression, which is 87.3%
URBAN DESIGN STRATEGIES FOR THE UPCYCLING OF URBAN INFRASTRUCTURE RESIDUAL POCKETS: 3D CITY MODELLING FROM OPEN DATA AND LOW-COST RAPID MAPPING TOOLS
This paper deals with the 3D City Modelling specific procedure developed as a tool to support strategies for urban regeneration, within the framework of the B-ROAD research project.The B-ROAD research project, whose acronym stands for Below the Road, is developing urban design strategies for upcycling urban infrastructure residual pockets.The B-ROAD’s methodology is conceived as research by design as it is carried out by creating pilot scenarios, disclosing the latent and still unexpressed potential of these wasted areas and displaying their potential transformations, to turn them into precious resources for the contemporary city.The 3D City Modelling of the study area has proved to be essential and strategic yet often complex and critical as most of the spatial and architectural features of B-ROAD spaces, as well as their potential, cannot be detected nor represented through the traditional means of representation of urbanised land, as aerial survey-based representations, or GIS. Likewise, traditional, or even cutting-edge, survey techniques that can be used to acquire missing data are often costly and time-consuming, thus making it hardly impossible to achieve the purpose of extensive and deep knowledge of such a vast area. Thus, 3D City Modelling aimed at examining spaces and providing a final representation of pilot scenarios has been a crucial stage requiring a specific in-depth study.</p
Modeling and Simulation of an Oxygen-Blown Bubbling Fluidized Bed Gasifier using the Computational Particle-Fluid Dynamics (CPFD) Approach
Fluidized beds are conventional components of many industrial processes, such as coal gasification for energy generation and syngas production. Numerical simulations help to properly design and understand the complex multiphase flows occurring in these reactors. Two modeling approaches are usually adopted to simulate multiphase flows: the two fluids Eulerian-Eulerian model and the continuous/discrete Eulerian-Lagrangian model. Since fluidized beds account for an extremely large number of particles, tracking each of them could not assure to get results within a reasonable computational time. The Computational Particle-Fluid Dynamics (CPFD) approach, which belongs to the Eulerian-Lagrangian models class, groups together particles with similar key parameters (e.g. composition, size) into computational units (parcels). Parcel collisions are modeled by an isotropic solid stress function, depending on solid volume fraction. In this paper, the bubbling fluidized bed (BFB) upstream gasifier of the EU research infrastructure ZECOMIX (Zero Emissions of Carbon with Mixed technologies) has been simulated using a CPFD approach via Barracuda® software. The effect of different fluidizing agent injection strategies on bed bubbling and mixing, for non-reacting cases, has been studied. The numerical results for a reacting case have been compared to the available experimental data, gathered during the coal gasification campaign. The model has proved to be very useful in the choice of the more efficient injection configuration that assures a more effective contact of the gas with the solid bed and a good bubbling fluidization regime, together with a satisfactory prediction of the outlet gas composition. The numerical approach has turned out to be robust and time-saving and allowed to dramatically reduce the computational cost with respect the classical two fluids Eulerian-Eulerian models
Antifibrotic treatment response and prognostic predictors in patients with idiopathic pulmonary fibrosis and exposed to occupational dust
BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) is an aggressive interstitial lung disease with an unpredictable course. Occupational dust exposure may contribute to IPF onset, but its impact on antifibrotic treatment and disease prognosis is still unknown. We evaluated clinical characteristics, respiratory function and prognostic predictors at diagnosis and at 12 month treatment of pirfenidone or nintedanib in IPF patients according to occupational dust exposure. METHODS: A total of 115 IPF patients were recruited. At diagnosis, we collected demographic, clinical characteristics, occupational history. Pulmonary function tests were performed and two prognostic indices [Gender, Age, Physiology (GAP) and Composite Physiologic Index (CPI)] calculated, both at diagnosis and after the 12 month treatment. The date of long-term oxygen therapy (LTOT) initiation was recorded during the entire follow-up (mean = 37.85, range 12-60 months). RESULTS: At baseline, patients exposed to occupational dust [≥ 10 years (n = 62)] showed a lower percentage of graduates (19.3% vs 54.7%; p = 0.04) and a higher percentage of asbestos exposure (46.8% vs 18.9%; p 0.002) than patients not exposed [< 10 years (n = 53)]. Both at diagnosis and after 12 months of antifibrotics, no significant differences for respiratory function and prognostic predictors were found. The multivariate analysis confirmed that occupational dust exposure did not affect neither FVC and DLCO after 12 month therapy nor the timing of LTOT initiation. CONCLUSION: Occupational dust exposure lasting 10 years or more does not seem to influence the therapeutic effects of antifibrotics and the prognostic predictors in patients with IPF
Breathlessness, but not cough, suggests chronic obstructive pulmonary disease in elderly smokers with stable heart failure.
Chronic obstructive pulmonary disease (COPD) is a common comorbidity of heart failure (HF), but remains often undiagnosed, and we aimed to identify symptoms predicting COPD in HF. As part of an observational, prospective study, we investigated stable smokers with a confirmed diagnosis of HF, using the 8-item COPD-Assessment-Test (CAT) questionnaire to assess symptoms. All the items were correlated with the presence of COPD, and logistic regression models were used to identify independent predictors. 96 HF patients were included, aged 74, 33% with COPD. Patients with HF and COPD were more symptomatic, but only breathlessness when walking up a hill was an independent predictor of COPD (odds ratio=1.33, p=0.0484). Interestingly, COPD-specific symptoms such as cough and phlegm were not significant. Thus, in elderly smokers with stable HF, significant breathlessness when walking up a hill is most indicative of associated COPD, and may indicate the need for further lung function evaluation
Circulating microRNAs found dysregulated in ex-exposed asbestos workers and pleural mesothelioma patients as potential new biomarkers
Malignant pleural mesothelioma (MPM), a fatal cancer, is an occupational disease mostly affecting workers ex-exposed to asbestos fibers. The asbestos, a cancerogenic mineral of different chemical composition, was widely employed in western Countries in industrial manufactures of different types. MPM may arise after a long latency period, up to five decades. MPM is resistant to conventional chemo- and radio-therapies. Altogether, these data indicate that the identification of new and specific markers are of a paramount importance for an early diagnosis and treatment of MPM. In recent years, microRNAs expression was found dysregulated in patients, both in cancer cells and sera, affected by tumors of different histotypes, including MPM. Cell and circulanting microRNAs, found to be dysregulated in this neoplasia, were proposed as new biomarkers. It has been reported that circulating microRNAs are stable in biological fluids and could be employed as potential MPM biomarkers. In this investigation, circulating microRNAs (miR) from serum samples of MPM patients and workers ex-exposed to asbestos fibers (WEA) and healthy subjects (HS) were comparatively analyzed by microarray and RT-qPCR technologies. Our results allowed (i) to select MiR-3665, an endogenous stable microRNA, as the internal control to quantify in our analyses circulating miRNAs; to detect (ii) miR-197-3p, miR-1281 and miR 32-3p up-regulated in MPM compared to HS; (iii) miR-197-3p and miR-32-3p up-regulated in MPM compared to WEA; (iv) miR-1281 up-regulated in both MPM and WEA compared to HS. In conclusion, three circulating up-regulated microRNAs, i.e. miR-197-3p, miR-1281 and miR-32-3p are proposed as potential new MPM biomarker
The Redox Enzyme p66Shc Contributes to Diabetes and Ischemia-Induced Delay in Cutaneous Wound Healing
OBJECTIVE:
The redox enzyme p66Shc produces hydrogen peroxide and triggers proapoptotic signals. Genetic deletion of p66Shc prolongs life span and protects against oxidative stress. In the present study, we evaluated the role of p66Shc in an animal model of diabetic wound healing.
RESEARCH DESIGN AND METHODS:
Skin wounds were created in wild-type (WT) and p66Shc(-/-) control and streptozotocin-induced diabetic mice with or without hind limb ischemia. Wounds were assessed for collagen content, thickness and vascularity of granulation tissue, apoptosis, reepithelialization, and expression of c-myc and beta-catenin. Response to hind limb ischemia was also evaluated.
RESULTS:
Diabetes delayed wound healing in WT mice with reduced granulation tissue thickness and vascularity, increased apoptosis, epithelial expression of c-myc, and nuclear localization of beta-catenin. These nonhealing features were worsened by hind limb ischemia. Diabetes induced p66Shc expression and activation; wound healing was significantly faster in p66Shc(-/-) than in WT diabetic mice, with or without hind limb ischemia, at 1 and 3 months of diabetes duration and in both SV129 and C57BL/6 genetic backgrounds. Deletion of p66Shc reversed nonhealing features, with increased collagen content and granulation tissue thickness, and reduced apoptosis and expression of c-myc and beta-catenin. p66Shc deletion improved response to hind limb ischemia in diabetic mice in terms of tissue damage, capillary density, and perfusion. Migration of p66Shc(-/-) dermal fibroblasts in vitro was significantly faster than WT fibroblasts under both high glucose and hypoxia.
CONCLUSIONS:
p66Shc is involved in the delayed wound-healing process in the setting of diabetes and ischemia. Thus, p66Shc may represent a potential therapeutic target against this disabling diabetes complication
- …