66 research outputs found
Parental relatedness through time revealed by runs of homozygosity in ancient DNA
Parental relatedness of present-day humans varies substantially across the globe, but little is known about the past. Here we analyze ancient DNA, leveraging that parental relatedness leaves genomic traces in the form of runs of homozygosity. We present an approach to identify such runs in low-coverage ancient DNA data aided by haplotype information from a modern phased reference panel. Simulation and experiments show that this method robustly detects runs of homozygosity longer than 4 centimorgan for ancient individuals with at least 0.3 × coverage. Analyzing genomic data from 1,785 ancient humans who lived in the last 45,000 years, we detect low rates of first cousin or closer unions across most ancient populations. Moreover, we find a marked decay in background parental relatedness co-occurring with or shortly after the advent of sedentary agriculture. We observe this signal, likely linked to increasing local population sizes, across several geographic transects worldwide
A closer look into the microbiome of microalgal cultures
Although bacteria are commonly co-occurring in microalgal cultivation and production systems, little is known about their community structure and how it might be affected by specific microalgal groups or growth conditions. A better understanding about the underlying factors that determine the growth of specific bacterial populations is not only important for optimizing microalgal production processes, but also in the context of product quality when the algal biomass is to be used for future food or feed. We analyzed the bacterial community composition associated with nine microalgal strains in stock culture, maintained in two different growth media, to explore how specific taxonomic microalgal groups, microalgal origin, or the growth medium affect the bacterial community composition. Furthermore, we monitored the bacterial community composition for three Phaeodactylum strains during batch cultivation in bubble columns to examine if the bacterial composition alters during cultivation. Our results reveal that different microalgal genera, kept at the same cultivation conditions over many years, displayed separate and unique bacterial communities, and that different strains of the same genus had very similar bacterial community compositions, despite originating from different habitats. However, when maintained in a different growth medium, the bacterial composition changed for some. During batch cultivation, the bacterial community structure remained relatively stable for each Phaeodactylum strain. This indicates that microalgae seem to impact the development of the associated bacterial communities and that different microalgal genera could create distinct conditions that select for dominance of specific bacteria. However, other factors such as the composition of growth medium also affect the formation of the bacterial community structure
Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans
Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka). Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25–20 ka, with Ancient Beringians branching off around 22–18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian ‘standstill model’. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5–14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos, Inuits or Kets, and that Native American gene flow into Inuits was through northern and not southern Native American groups. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians
Polyclonal antibody production anti Pc_312-324 peptide: Its potential use in electrochemical immunosensors for transgenic soybean detection
A new polyclonal antibody that recognizes the CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS), which provides resistance to glyphosate in soybean (Roundup Ready®, RR soybean), was produced. New Zealand rabbits were injected with a synthetic peptide (Pc_312-324, (PEP)) present in the soybean CP4-EPSPS protein. The anti-PEP antibodies production was evaluated by electrophoresis (SDS-PAGE) and an enzyme-linked immunosorbent assay (ELISA) was developed in order to study their specificity. The ELISA showed that the polyclonal antibody was specific to PEP. In addition, the anti- PEP was immobilized onto a gold disk electrode and the antigen-antibody interaction was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Moreover, the EIS showed that the electron transfer resistance of the modified electrode increased after incubation with solutions containing CP4-EPSPS protein from RR transgenic soybean, while no changes were detected after incubation with no-RR soybean proteins. These results suggest that the CP4-EPSPS was immobilized onto the electrode, due to the specific interaction with the anti-PEP. These results show that this antigen-antibody interaction can be detected by electrochemical techniques, suggesting that the anti-PEP produced can be used in electrochemical immunosensors development to quantify transgenic soybean.Fil: Farias, Marcos Ezequiel. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; ArgentinaFil: Marani, Mariela Mirta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Ramirez, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Niebylski, Ana Maria. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Molina, Patricia Gabriela. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentin
Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders
Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10(-4) per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs
Ancestral population genomics
Borrowing both from population genetics and phylogenetics, the field of population genomics emerged as full genomes of several closely related species were available. Providing we can properly model sequence evolution within populations undergoing speciation events, this resource enables us to estimate key population genetics parameters such as ancestral population sizes and split times. Furthermore we can enhance our understanding of the recombination process and investigate various selective forces. With the advent of resequencing technologies, genome-wide patterns of diversity in extant populations have now come to complement this picture, offering an increasing power to study more recent genetic history
SpectralTDF: transition densities of diffusion processes with time-varying selection parameters, mutation rates and effective population sizes
MotivationIn the Wright-Fisher diffusion, the transition density function describes the time evolution of the population-wide frequency of an allele. This function has several practical applications in population genetics and computing it for biologically realistic scenarios with selection and demography is an important problem.ResultsWe develop an efficient method for finding a spectral representation of the transition density function for a general model where the effective population size, selection coefficients and mutation parameters vary over time in a piecewise constant manner.Availability and implementationThe method, called SpectralTDF, is available at https://sourceforge.net/projects/spectraltdf/[email protected] informationSupplementary data are available at Bioinformatics online
Septic arthritis of the pubic symphysis caused by Streptococcus mitis.
Septic arthritis of the pubic symphisis is distinguished from osteitis pubis by positive cultures. The symptoms, physical examination and laboratory findings of these two conditions are comparable. We present a case of 57-year-old woman with septic arthritis of pubic symphisis caused by Streptococcus mitis, a commensal oral flora that belongs to viridans group streptococci, which normally reside in the oral cavity, the gastrointestinal and the urogenital tract
- …