45 research outputs found
Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers
Low-speed wind-tunnel performance tests of two advanced propellers have been completed at the NASA Lewis Research Center as part of the NASA Advanced Turboprop Program. The 62.2 cm (24.5 in.) diameter adjustable-pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds (i.e., from Mach 0.10 to 0.34) at zero angle of attack in the NASA Lewis 10 by 10 Foot Supersonic Wind Tunnel. Both models had eight blades and a cruise-design-point operating condition of Mach 0.80, and 10.668 km (35,000 ft) I.S.A. altitude, a 243.8 m/s (800 ft/sec) tip speed, and a high power loading of 301 kW/sq m (37.5 shp/sq ft). Each model had its own integrally designed area-ruled spinner, but used the same specially contoured nacelle. These features reduced blade-section Mach numbers and relieved blade-root choking at the cruise condition. No adverse or unusual low-speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propeller. Typical efficiencies of the straight and 45 deg swept propellers were 50.2 and 54.9 percent, respectively, at a takeoff condition of Mach 0.20 and 53.7 and 59.1 percent, respectively, at a climb condition of Mach 0.34
Wind tunnel performance results of an aeroelastically scaled 2/9 model of the PTA flight test prop-fan
High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode
Cascade flutter analysis with transient response aerodynamics
Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers
TURBOMAT: A Probabilistic Turbomachinery Aeroelastic Analysis Tool
An integration of aeroelastic analysis procedures with probabilistic analysis methods enables us to design safe reliable engines with quantified reliability. Towards this goal, a graphical user interface (GUI) based tool that integrates the codes Aeroelastic analysis of propfans (ASTROP2) and Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) is developed. The tool entitled TURBOMachinery Aeroelastic Analysis Tool (TURBOMAT), is developed utilizing the MATrix Laboratory (Matlab) Guide (Graphical User Interface Development) tool box. TURBOMAT provides a user friendly computational environment for rapid assessment of Turbomachinery blades flutter characteristics, subjected to uncertain loading conditions with variability in material and aerodynamic properties. The tool is seen as an education tool for new students and young engineers starting their careers in structural Aeroelasticity who want to learn and understand aeroelastic aspects of turbomachinery components, fans, compressors and turbines, including uncertainties in loading and material properties.A typical fan blade configuration geometry was chosen to demonstrate the tool. The results are presented in the form of probabilistic density function (PDF), the cumulative distribution function (CDF) and sensitivity factors. Both first order fast probability integration (FPI) and the Monto Carlo (MC) techniques are used in the analysis and compared. The tool enabled us to quantify blade flutter reliability as well as the ranking of uncertain variables and their importance to blade flutter response
Comparisons of Flutter Analyses for an Experimental Fan
Two propulsion aeroelasticity codes were used to model the aeroelastic characteristics of an experimental forward-swept fan that encountered flutter during wind tunnel testing. Both of these three-dimensional codes model the unsteady flowfield due to blade vibrations using the Navier-Stokes equations. In the first approach, the unsteady flow equations are solved using an implicit time-marching approach. In the second approach, the unsteady flow equations are converted to a harmonic balance form and solved using a pseudo-time marching method. This paper describes the flutter calculations and compares the results to experimental measurements
NASA Lewis Research Center Workshop on Forced Response in Turbomachinery
A summary of the NASA Lewis Research Center (LeRC) Workshop on Forced Response in Turbomachinery in August, 1993 is presented. It was sponsored by the following NASA organizations: Structures, Space Propulsion Technology, and Propulsion Systems Divisions of NASA LeRC and the Aeronautics and Advanced Concepts & Technology Offices of NASA Headquarters. In addition, the workshop was held in conjunction with the GUIde (Government/Industry/Universities) Consortium on Forced Response. The workshop was specifically designed to receive suggestions and comments from industry on current research at NASA LeRC in the area of forced vibratory response of turbomachinery blades which includes both computational and experimental approaches. There were eight presentations and a code demonstration. Major areas of research included aeroelastic response, steady and unsteady fluid dynamics, mistuning, and corresponding experimental work
A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis)
Forward-Swept Fan Flutter Calculated Using TURBO Code
Flutter, a self-excited dynamic instability arising because of fluid structure interaction, can be a significant design problem for rotor blades in gas turbines. Blade shapes influenced by noise-reduction requirements increase the likelihood of flutter in modern blade designs. Validated numerical methods provide designers an invaluable tool to calculate and avoid the flutter instability during the design phase. Toward this objective, a flutter analysis code, TURBO, was developed and validated by researchers from the NASA Glenn Research Center and other researchers working under grants and contracts with Glenn. The TURBO code, which is based on unsteady three-dimensional Reynolds-averaged Navier-Stokes equations was used to calculate the observed flutter of a forward-swept fan. The forward-swept experimental fan, designed to reduce noise, showed flutter at part-speed conditions during wind tunnel tests
Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver
This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code