
NASA Technical Memorandum 103746

_r

_11,- #

Cascade Flutter Analysis With Transient

Response Aerodynamics

Milind A. Bakhle and Aparajit J. Mahajan

University of Toledo

Toledo, Ohio

Theo G. Keith, Jr.

Ohio Aerospace Institute

Brook Park, Ohio

and University of Toledo

Toledo, Ohio

George L. Stefko

Lewis Research Center __

Cleveland, Ohio ....
r

February 1991

(NA£A-TM-103766) CASCAnE FLUTTER ANALYSIS

WITH TRANSIENT RESPONSE AERUDYNANICS (NASA)

40 p CSCL ?OK

NQl-l_47 5

Uncles

G3/39 0001668

https://ntrs.nasa.gov/search.jsp?R=19910010162 2020-03-19T18:30:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42819323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Cascade Flutter Analysis

With Transient Response Aerodynamics

Milind A. Bakhle and Aparajit J. Mahajan

University of Toledo

Department of Mechanical Engineering

Toledo, Ohio 43606

Theo G. Keith, Jr.

Ohio Aerospace Institute

Brook Park, Ohio 44142

and University of Toledo

Department of Mechanical Engineering

Toledo, Ohio 43606

George L. Stefko

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

Two methods for calculating linear frequency domain unsteady aerodynamic

coefficients from a time-marching full-potential cascade solver are developed and

verified. In the first method, the Influence Coefficient method, solutions to

elemental problems are superposed to obtain the solutions for a cascade in which

all blades are vibrating with a constant interblade phase angle. The elemental

problem consists of a single blade in the cascade oscillating while the other blades
remain stationary. In the second method, the Pulse Response method, the

response to the transient motion of a blade is used to calculate influence
coefficients. This is done by calculating the Fourier transforms of the blade

motion and the response. Both methods are validated by comparison with the
Harmonic Oscillation method, in which all the airfoils are oscillated, and are

found to give accurate results. The aerodynamic coefficients obtained from these
methods are used for frequency domain flutter calculations involving a typical

section blade structural model. Flutter calculations are performed for two

examples over a range of subsonic Mach numbers using both fiat plates and
actual airfoils.
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sonic velocity

elastic axis position from midchord, see Figure la.
airfoil semi-chord

airfoil chord

lift coefficient

moment coefficient about elastic axis

blade motion

response to f(t)

Fourier transform of f(t)

Fourier transform of F(t)

response to unit step function in blade displacement

Fourier transform of Fa(t)

cascade gap or spacing, see Figure lb.

gap-to-chord ratio

plunging displacement, normal to airfoil chord

imaginary unit,
unit matrix

moment of inertia about elastic axis

imaginary part of { }

reduced frequency, kc =wc/Moo aoo

spring constant for plunging

spring constant for pitching

lhh , lha , lah , laa

frequency domain unsteady aerodynamic coefficients
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mass of typical section
Mach number

number of blades in the cascade

matrix defined in Equation (6)

complex representation of force on 0 th blade

influence coefficient, force on i th blade due to oscillation ofj th blade

lift and moment about elastic axis

interblade phase angle index

radius of gyration about elastic axis, (Ia/mb2) u2

real part of { }
blade index

static unbalance

time

fluid velocity in x,y directions

Cartesian coordinates

distance between elastic axis and center of mass, xa = So�rob

eigenvector in Equation (6)

reduced velocity, V *= Moo aoo/bwo
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pitching displacement about elastic axis

ratio of specific heats

unit step function

stagger angle

eigenvalue in Equation (6)

mass ratio,/.l = m/Trp_b 2

real part of the eigenvalue (damping ratio) in Equation (7)

imaginary part of the eigenvalue (damped frequency) in Equation (7)

transformed spatial coordinates

fluid (air) density

interblade phase angle

nondimensional time, Tffi ao. t/c

velocity potential

oscillation frequency

uncoupled natural frequency for bending (plunging), wh = (Kh/m) 1/2

uncoupled natural frequency for torsion (pitching), Wa " (K_/Ia)l/2

d( )/dt

( ) at far upstream conditions

( ) at flutter

amplitude of harmonic variable ( )

( ) in the 14h interblade phase angle mode

( ) for the s th blade



INTRODUCTION

Accurate prediction of flutter in turbomachinery components has been a

primary research goal of aeroelasticians. The development of advanced turboprop

(propfan) engines has led to a renewed interest in the study of flutter in bladed

disks. Propfans, which have been designed to operate at high subsonic cruise

speeds, have encountered flutter in the dkrly part of their development. 1

Two fundamental approaches have been used in flutter calculations --

frequency domain analysis and time domain analysis. The frequency domain
method is the conventional approach in turbomachinery aeroelasticity. Recently,

the time domain method, which has found wide application in aircraft or fixed-

wing aeroelasticity, has also been applied to bladed disk or cascade flutter

calculations.2, 3 The frequency domain approach has been generally preferred

over the time domain approach because the frequency domain analysis requires

only unsteady aerodynamic forces corresponding to harmonic blade motion. The
time domain method, on the other hand, requires aerodynamic forces

corresponding to arbitrary blade motions. The aerodynamic forces corresponding
to harmonic blade motions are considerably easier to determine than those

corresponding to arbitrary blade motions because the explicit time-dependence
can be eliminated from the governing equations, thus reducing the number of

independent variables. Further, in a linear flutter analysis, in which only the
onset of flutter is to be predicted, blade motions can be assumed to be

infinitesimally small. This allows considerable simplification in the aerodynamic

analysis since it allows perturbation techniques to be used. For linear flutter

analysis, the frequency domain and time domain methods yield the same

results.2

The unsteady aerodynamic analyses that have been used in flutter

calculations have, for the most part, been restricted to inviscid flow theories.

Almost all the aerodynamic analyses used in flutter prediction have been based on

linearized potential theories. The earliest analyses 4,6 assumed that the unsteady

component of the flow was a small harmonic perturbation about a uniform,

steady mean flow; this is equivalent to neglecting the blade thickness and camber.

Over the past decade, unsteady linearized analyses have been developed 6-8 that

include the effects of non-uniform mean flow due to blade shape. These analyses

split the flowfield into steady and unsteady components. The assumption that the

unsteady flow component is a small harmonic perturbation about the steady flow

allows the elimination of the time variable from the governing equations. The

unsteady component of the flow is described by a linear equation with coefficients

that depend on the mean steady flowfield.

Recently, unsteady aerodynamic analyses based on the time domain solution

of the full-potential and Euler equations have been developed. 9,1° These methods

can calculate the unsteady flowfield in a cascade for blade motions that are

arbitrary functions of time. The blade motions can be prescribed or determined

from a structural model. Accordingly, these flow solvers have been coupled with

structural models for time domain flutter analysis. 2,11 Also, by specifying the
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blade motions to be simple harmonic (in time), it is possible 12 to calculate the

aerodynamic forces required in a frequency domain flutter analysis. In this case,

although the blade motion is prescribed to be harmonic, no assumption is made

regarding the linearity of the aerodynamic response (lift and moment). By

selecting an amplitude that is sufficiently small to ensure a linear response, it is

possible to obtain the same information that was obtained by Iinearizing the

original unsteady equations (by assuming infinitesimal harmonic motions). But,
this is not a computationally efficient method for obtaining this type of

aerodynamic data for the following reasons. Firstly, the additional independent

variable, namely time, adds to the computational cost. Secondly, multiple

interblade passages must be included in the calculation to account for the phase

lag between the motion of adjacent blades and this increases computational effort

considerably. In the present work, alternate methods are developed to calculate

the frequency domain unsteady aerodynamic coefficients in a more efficient
manner.

An approach has been developed in the present study that allows the time

domain full-potential flow solver 9 to be used efficiently to determine aerodynamic

data corresponding to small amplitude harmonic blade motions for use in

frequency domain flutter calculations. The conventional approach to calculating

harmonic aerodynamic data from a time domain analysis is to specify the blade

motions to be simple harmonic and to decompose the resulting time-dependent

response into Fourier components. This method, in which all the blades are

oscillated with a specified frequency and and interblade phase angle, is referred to
as the Harmonic Oscillation method. The Harmonic Oscillation method does not

exploit the linearity of the unsteady flow problem for small amplitudes of motion.

In the present work, the principle of superposition is used in the Influence

Coefficient method to determine the aerodynamic forces for different values of

interblade phase angle by summing the solutions to elemental problems. The

elemental problem consists of a cascade with one blade oscillating in harmonic

motion while the other blades remain stationary. Next, the Pulse Response
method is combined with the Influence Coefficient method to determine the

aerodynamic coefficients for harmonic blade motions at different values of

frequency and different values of interblade phase angle. This is done by giving

one of the blades in the cascade a transient motion. The resulting transient forces
on all the blades are Fourier transformed and combined to determine the

aerodynamic forces at a given frequency and interblade phase angle. These

methods are validated by comparison with the Harmonic Oscillation method.

Finally, the aerodynamic data thus obtained is used for flutter calculations.

Flutter calculations are done with a typical section structural model (lumped

parameter representation) for each blade. Two examples are considered, one with

a single-degree-of-freedom typical section and the other with a two-degrees-of

freedom typical section. The structural parameters and airfoilshape used in the

second example are representative of the SR5 propfan. 13



ANALYSIS

Flutter analysis of a fluid-structure system requires an aeroelastic

representation of the system. Accordingly, the structural model, the aerodynamic
model and the aeroelastic stability analysis are described in this section.

Structural model

Each blade of the rotor (bladed disk) is represented by a typical section

model 14. The dynamic behavior of the blade is represented by a rigid two-
dimensional airfoil section taken from the three-quarter span location of the

blade. The typical section is allowed two degrees of freedom -- plunging and

pitching as shown in Figure la. The plunging motion is in a direction

perpendicular to the airfoil chord and models the bending of the blade; the

pitching motion about the elastic axis simulates the torsion of the blade. The

equations of motion for a single blade are:

m'h + Saa + Khh -'- Qh (1)

+ + - (2)

where h is the plunging (bending) displacement, a is the pitching (torsion)

displacement, m is the airfoil mass, Ia is the moment of inertia, Sa is the static
unbalance, Kh and Ka are the spring constants for plunging and pitching,

respectively; Qh and Qa are the aerodynamic loads (lift and moment, respectively)

and the dots over the displacements indicate differentiation with respect to time.

Aerodynamic model

The aerodynamic model is based on the unsteady, two-dimensional, full-

potential equation. The governing equation for irrotational, isentropic flow written
in conservative form is:

Op a(pu ) d(pv )
+- + _ - 0 (3)

Ot Ox Oy

where

Ox
, v =O_

dy
and
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In these equations, ¢ is the velocity potential; p_, aoo and Moo are the density, sonic

velocity and Mach number, respectively, all evaluated at far upstream conditions.

The governing equation is transformed to the computational plane where it is

discretized and solved using a finite-volume scheme. The method of solution 9,15 is

a time-marching scheme that uses approximate factorization at each time level

with quasi-Newton iterations to maintain time accuracy. The transformation

from physical coordinates (x, y, t) to computational coordinates (_, q, T) is defined

at discrete grid points. An H-type grid, shown schematically in Figure lb, is used.

It consists of _-constant lines that are parallel to the y-axis and r7---constant lines

that are obtained by interpolating between the upper and lower boundaries of each

interblade passage. For unsteady calculations, the airfoil positions change with

time and a new grid is generated at each time level by interpolating between the

passage boundaries determined from the instantaneous positions of the airfoils.

The governing equation is solved as an initial-boundary value problem. For

steady calculations, a uniform fiowfield is used as the initial condition; for

unsteady calculations, the steady flowfield is used as the initial condition. The

boundary conditions are described below.

Airfoil surface:
The airfoil surfaces are treated as impermeable, i.e., the normal velocity of

the fluid relative to the airfoil surface is zero. Flow tangency is imposed at the

instantaneous position of the airfoilat each time step. In order to affect this, a

new grid which conforms to the airfoil surfaces is generated at each time step.
Blade motions are thus fully accounted for using moving grids.

Wake:

The vorticity that is shed from the trailing edge of the airfoil is assumed to
remain confined within an infinitely thin region of the flowfield denoted as a wake

sheet. Wakes are free material surfaces with no pressure difference across them.

In the present analysis, wake positions are prescribed in advance; continuity of

pressure and normal velocity is then enforced across the wake. This procedure is
followed to avoid difficulties related to the tracking of the wake location at each

time step. The wakes are prescribed to be straight lines extending from the

trailing edge of each airfoil to the exit boundary. The slope of these lines is selected
to be the mean of the slopes of the upper and lower surfaces of the airfoil at the

trailing edge.

Inlet�Exit boundaries:

The inlet and exit boundaries are artificial boundaries that have been

introduced because the numerical computations cannot be extended to infinite

distances in the upstream and downstream directions and must be restricted to a

small, finite region in space. Since these are non-physical boundaries, the

boundary conditions that are used must allow acoustic waves to pass through

without reflecting them back into the computational region. Even though it would

be convenient to prescribe the far upstream/downstream flow velocity or Math
number at these boundaries, this is not done because it leads to non-physical wave



reflections. In the present analysis, characteristic boundary conditions 16 are used

at the inlet and exit boundaries. At the inlet/exit boundary, the Riemann

invariant corresponding to the incoming characteristic (positive characteristic

with respect to the inward normal) is prescribed based on the far

upstream/downstream conditions. This allows planar acoustic waves, which are
at normal incidence to the boundary, to pass through without reflection. However,

the acoustic waves are generally not planar; also, they are generally not at
normal incidence to the boundary. _herefore, the use of one-dimensional

Riemann-invariant boundary conditions results in some wave reflections back

into the calculation domain.

Periodic boundaries:

Periodic conditions are imposed on grid lines extending from the leading edge
of the airfoil to the inlet boundary; see Figure lb. The periodic conditions are used

to simulate the fundamental periodicity present on the bladed disk in the

circumferential direction.

Additional details concerning the aerodynamic model and the boundary
conditions can be found in References 9 and 15.

Aeroelastic Stability

For a tuned cascade, in which all the blades are identical, the aeroelastic
modes consist of each of the N individual blades vibrating with equal amplitudes

with a f'Lxed interblade phase angle between adjacent blades 17. For the s th blade

vibrating in the r th interblade phase angle mode, this can be written as:

Ihs/b I

h o/bl i(wt*arS)
ffi 6fO /

e S-0, 1,2 ..... N-i (4)

The phase angle between adjacent blades is given as

a r ffi 2rrr/N r - 0, 1, 2 ..... N-! (5)

The corresponding aerodynamic forces can be written as linear functions of the

displacements using the complex-valued frequency domain unsteady

aerodynamic coefficients lhh , lha, lab and la a :

where p = m/zp_b 2 is the mass ratio of the blade. The eigenvalue problem for the

tuned system can be written 18 as:

8
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[P]

g + lldtr l_ Xa + lhar-

(Wh/ )2

l_ X a + lah r

. .

(6)

In the above, Xa = Sa/mb is the distance between the elastic axis and center of

mass and ra-(Is�rob2) u2 is the radius of gyration about the elastic axis, both in

semi-chord units; Wh = (Kh /m) 1/2 and tOa = (Ks/Ia) 1/2 are the uncoupled natural

frequencies for bending and torsion, respectively; note, the subscript 's' which

identifies the blade has been dropped.

For each interblade phase angle mode, the solution of the above eigenvalue

problem results in two complex eigenvalues of the form

The real part of the eigenvalue (_) represents the damping ratio and the

imaginary part (v) represents the damped frequency; flutter occurs if p 2 0 for

any of the eigenvalues. The stability of each phase angle mode is examined

separately. The interblade phase angle is f'Lxed at one of the values given by

Equation (5) and the 2x2 eigenvalue problem is solved.

However, before the eigenvalue problem can be solved, the aerodynamic

coefficients must be calculated. For f'Lxed cascade geometric parameters, the

aerodynamic coefficients are functions of inlet Mach number (M_), reduced

frequency of blade vibration (kc) and interblade phase angle (ar). The following

procedure has been adopted for flutter calculations. A value of inlet Mach number
is selected. A value of reduced frequency is assumed and the aerodynamic

coefficients lhh, lha, lab and laa are calculated for all values of phase angle in

Equation (5). The eigenvalue problem is solved for each value of interblade phase

angle. The reduced frequency is varied until the real part of one of the eigenvalues

(_) becomes zero while the real part of the other eigenvalue is negative. The

assumed flutter reduced frequency (kcf) and the calculated flutter frequency (vf)

are both based on wf. Thus, these two can be combined to eliminate tcf and the

flutter reduced velocity (V'f) is obtained, viz., V*f = 2 -re/kcf. The critical phase

angle is identified as the one which results in the lowest flutter velocity. The

stability of a single-degree-of-freedom pitching system can be inferred entirely

9



from the imaginary part of the moment coefficient, Im{laa}; flutter occurs if

Im{la a } _ O.

Aerodynamic Coefficients

The calculation of the frequency domain unsteady aerodynamic coefficients

(lhh, lha, lab and la a ) is described next. For a given cascade geometry and inlet

Mach number, these coefficients are required for plunging and pitching motions

of specified frequency and specified interblade phase angle (restricted by Equation
(5)). The full-potential solver is based on a time-marching algorithm and three
different methods of calculating the aerodynamic coefficients are described.

1. Harmonic Oscillation Method

In the Harmonic Oscillation (HO) method 12, all the N airfoils are oscillated

with the specified frequency and specified interblade phase angle. The motion of

the s th airfoil in the cascade is prescribed to be of the form:

or

h - h o sin(w t+Sar) " ho sin(kcM.or +sa_)

a = % sin(w t+sar) = % sin(kcM_r+sar)

for plunging

for pitching

Calculations are started from a steady flowfield and continued until starting, non-

periodic, transients have decayed and the fiowfield has become periodic in time.
The lif_ and moment acting on the reference airfoil (s--0) are calculated at every

time step and later decomposed into Fourier components. If the amplitude of
oscillations is sufficiently small, it can be shown by a perturbation analysis that

the flowfield will have the same harmonic time dependence as the motion 7.

Therefore, the lift and moment coefficients (Cl and Cm) on the zeroth blade can be

represented in terms of a complex quantity Q0as [Im{Q0}cos(wt)+

Re{Q0} sin(w t) ]. The frequency dom_n-unsteady aerodynamic c0efficients (lhh,

lha, lab and laa ) are then obtained by dividing Q0 by kc 2, the amplitude of motion

and other constants. The harmonic oscillation method requires that calculations

for each of the N values of interblade phase angle be done separately. It is possible

to reduce this computational effort by using the Influence Coefficient method

described next,

2. Influence Coefficient Method

The Influence Coefficient (IC) method is based on the principle of linear

superposition. Briefly, the solution to a problem is obtained by superposing the
solutions to the individual elemental problems that comprise the original

problem. Since the method is based on the principle of linear superposition, it is

valid only for linear problems. It can be shown that the unsteady part of the

present problem is linear (governed by a linear differential equation) for

10



sufficiently small amplitude of oscillation. 7 It should be emphasized that only the

unsteady part of the problem is linear; the steady flowfield is described by a

nonlinear equation.

Since the quantities of significance are the lii'_ and moment coefficients, the

following discussion will deai only with a general integrated force quantity.

However, the results obtained can be extended by analogy to pressure distributions
or the distribution of other flow variables. Also, complex notation is used for

convenience; in this notation it is implied that only the imaginary part of the

complex quantity is to be considered. For example, when the motion is specified to

be of the form hoe i°° t, it is understood that the motion is actually hosin(w t).

The problem to be solved consists of a cascade of N blades in which each blade

oscillates with a motion of the form sin(w t+Sar), where s is the blade index that

varies from 0 to N-1, and ar is the interblade phase angle given by Equation (5).

This problem is divided into N elemental problems. The k th elemental problem
consists of the same cascade of N blades in which the k th blade oscillates with a

motion of the form sin(w t) while all other blades remain stationary. The original

problem and all the elemental problems have solutions that are harmonic
functions of time.

For the problem in which all blades oscillate with a motion of the form

ei(Wt+sar),the forces (cland cm) on the 0th blade can be represented as Qo eiw t;Qo

is complex valued to allow the force to lead or lag the motion. The forces on the 0th

blade in the k th elemental problem can be represented as Qo, k eiwt; Q0,k is

sometimes referred to as an influence coefficient. Thus, using superposition, the

following relation can be obtained.

N-I

QoeiWt = Z Qo, k eiWt eikar (8)
k-0

Now, due to the periodicity of the cascade, only the relative positions of the

oscillating blade and the reference (zeroth) blade are important. That is, the forces

generated on the 0 th blade due to the oscillation of the k th blade are equal to the

forces on the Ist blade due to the oscillation of the k+l th blade, and so on. Thus,

Qo, k ffi Q-k,O ffi QN-k,O (9)

where the periodicity of the cascade of N blades has been invoked again in the last

step. Thus, the solution to the problem in terms of the influence coefficients can be

written as:

N

Qo eiwt= _ QN-k,o eiWte ikar (10)
k=l

11



Replacing the influence coefficients Qo, k by the coefficients QN-k,O means that

all the required influence coefficients can be determined simultaneously rather

than separately. Thus, instead of oscillating the k th blade, calculating the

pressure history on the zeroth blade and then repeating for all values of k between
0 and N-1, it is possible to oscillate the zeroth blade and calculate the pressures on

all the blades simultaneously. This means that the computational effort required

for the calculation of all the influence c qefficients can be reduced by a factor of N
over the Harmonic Oscillation method. '

It should be noted that the elemental problem used in the present work is

different from the one used more frequently, in which a single blade in an infinite

cascade is oscillatedl9, 20. In the present work, periodic boundary conditions are

used to simulate an infinite cascade using N blades in the calculations. Thus,

when a single blade in the N-blade cascade is oscillated, it corresponds to every

N th blade in the infinite cascade being oscillated. The expressions presented in

this section are exact for the discrete values of interblade phase angle given by

Equation (5) and approximate for all other values. Although the summation in

Equation (8) only extends over a finite number of terms, it does not represent a
truncation of an infinite sum as long as the value of interblade phase angle is

restricted by Equation (5). Calculations performed without using periodic

boundary conditions simulate a finite section of an infinite cascade surrounding

the blade that is being oscillated. This introduces an approximation into such

calculations for all values of interblade phase angle; however, this error

decreases rapidly as the number of blades used in the calculations is increased.

3. Pulse Response Method

For a given motion, plunging or pitching, the Harmonic Oscillation method

and the Influence Coefficient method require separate calculations for each

oscillation frequency of interest. In order to reduce the computational effort, the

Pulse Response (PR) method described in this section can be used; this method

has evolved from the indicia1 approach that is widely used in many different
fields.

Researchers have investigated the indicial approach for aerodynamic

calculations with isolated airfoils21 and cascades 22. The indicial response is the

response, liftor moment, to a step change in the given mode of motion. From the

indicial response, the response for any arbitrary motion, specifically harmonic

motion, can be calculated using Duhamel's superposition integral. Let the time-

dependence of the blade motion (plunging or pitching) be denoted as f(t) and let

the corresponding response (liftor moment) be denoted as F(t). Let Fo (t) denote

the response corresponding to a unit step function, f(t)= 5(t). The response

corresponding to an arbitrary motion f(t) can then be written using Duhamers

superposition integral as

_0 t
F(t) = F5(t-_) _) d_ (Ii)

12



Using the above equation, the response to a harmonic motion, f(t)= e iw t, can be
determined. Since only the periodic.response is of interest, the limit of the above

integral as t--*_ is considered. Using a change of variable and extending the

lower limit to -_, the following relation can be obtained

t) = iw (w)eiwt (12)

where F-_o(w) is the Fourier transform of F5 (t) given by

= f+_ F_(t) e- iwt dt (13)

The indicial response method has the following drawback. The step change in

the displacement results in infinite velocity at the time at which the step change
occurs. The indicial response contains a large spike at this time. Therefore, very

small time steps must be used to ensure that the results are accurate during this

period of rapid transients and the accurate evaluation of the Fourier integral over
this time interval is difficult. In addition, the treatment of this infinite velocity by

finite differences leads to non-physical transients that can cause errors in the

final results. To avoid these difficulties, researchers 23 have replaced the step

function by a smooth version which does not result in infinite velocities and

spikes. Polynomial functions of time have been used in place of the standard step
function to obtain the necessary smoothness at the beginning and end of the step.

This allows time steps of normal size to be used in the calculations.

For an arbitrary motion f(t) and the corresponding response F(t), the Fourier

transform of Equation (11) gives24:

= / (14)

where f(w) and F(w) are the Fourier transforms of f(t) and F(t), respectively. It

should be noted from Equation (12)that iwF_(w) gives the response to a harmonic

motion. Since only the response to a harmonic motion is to be obtained, any

arbitrary motion and the corresponding response can be used to obtain iwF_(w)

from Equation (14).

Thus, the time variation of both the motion and the response are required to

calculate the response to harmonic motions. To reduce the time required for the

transients to decay, the smooth step is often replaced by a pulse 25. In the pulse

motion, the blade returns to its original position after the duration of the pulse.

This is in contrast to the step motion in which the blade position is different before

and after the step. The pulse motion thus allows the flowfield to return to its

steady undisturbed state after the transients created by the pulse have decayed.

The unsteady calculations therefore need to be carried out only long enough to

13



ensure that the solution has reached its fmal state (the same as the initial state)

within some specified tolerance.

Several smooth pulse shapes have been investigated by researchers. A

comparison 3 of results from three different pulse shapes shows that although the

shape and size of the pulse determines the transient response, the ratio of the

Fourier transforms of the response an.d the motion remains unchanged. Thus,

the shape of the pulse is not of particular importance although care must be taken

to ensure that the transform of the pulse motion does not become zero in the

frequency range of interest. In addition, the duration of the pulse must be selected

according to the range of frequencies of interest. Thus, the harmonic time period
of interest must be smaller than the duration of the pulse for the results to be

meaningful. This places a lower limit on the values of frequency for which

calculations can be made using a pulse of given duration. The upper limit on the

frequency is determined by the size of the time step; the upper limit is generally

not relevant because the time step is normally quite small for reasons of

numerical stability and accuracy.

In the present calculations, the pulse function is selected as:

()21)4 _L__ exp 2 1 forO < t< tmax
fit) = t,,,_ 1 - t It,,,=,

f(t) = 0 for t > tmax (15)

where tmax is the duration of the pulse. The above choice makes f(t) and t'(t)

vanish at t=O and t=tmax; in addition, higher derivatives also go to zero at
t=tmax. This ensures that there is a smooth transition to and from the
undisturbed blade position.

The Pulse Response method is used in conjunction with the Influence

Coefficient method as follows. One blade in the cascade is given a transient

motion of the form h(t)- ho f(t) or a(t)- ao f(t). The calculations start with the

steady solution and unsteady response to the pulse in either motion, plunging or

pitching, is calculated until the transient flowfield reaches the steady flowfield

within a specified tolerance. The motion as well as the responses on all the blades
are recorded and Fourier transforms of these are calculated numerically for the

frequency of interest. Using these transforms, the influence coefficients (Qk,0) are

calculated from Equations (14); it is to be noted that the harmonic response,

iwF-_(w), obtained from Equation (14) for this case, is simply the influence

coefficient, Qk,0. Equation (10) is then used to calculate the frequency domain

unsteady aerodynamic coefficients (lhh, lha, lah and laa ) for the interblade

phase angle of interest. In this way, the coefficients can be determined for various
values of reduced frequency by recalculating the Fourier transforms for the

frequency of interest using the same time histories.
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RESULTS AND DISCUSSION

The results are presented in two parts. The results in the initial part serve to
validate the Influence Coefficient method and the Pulse Response method by

comparison with the Harmonic Oscillation method. In the remaining part of this

section, results of flutter calculations for two examples are presented.

Calculation of Aerodynamic Coefficients

Figure 2 shows the unsteady lift coefficient due to plunging motion in a

cascade comprised of eight flat plates. The cascade is unstaggered and has a

unity gap-to-chord ratio. The Mach number of the flow at the inlet is Moo-0.5 and

the reduced frequency of oscillation is ke=l.0. A 41x21 grid is used in the

calculations with 41 points in the streamwise direction and 21 points in the

direction of the stagger line in each of the 8 interblade passages; 21 points are

located on each (upper and lower) surface of each airfoil; all grid points are

uniformly distributed. 150 time steps/cycle of oscillation are used which

corresponds to a nondimensional time step of 0.084 and the calculations are
continued for three cycles of blade oscillation to allow non-periodic starting

transients to decay. The amplitude of oscillation used is ho/c-0.002 which is

found to be small enough to yield a response which is linearly dependent on the

amplitude of motion.

The results obtained from the IC method and the HO method are represented

as open symbols; the results from classical linear theory 4 are shown as dashed
lines and denoted as 'linear [4]'. A comparison of the various results reveals the

following. The HO method and the IC method yield virtually identical results.

This is simply a verification of the superposition principle and the associated

calculations. It implicitly confirms that the unsteady problem is linear for the

amplitude of motion used in the calculations. Similar comparisons made with
other airfoils and other cascade geometries have demonstrated the same level of

agreement seen here. The results of the present calculations also agree quite well
with the results from classical linear theory. For fiat plate airfoils and small

amplitude oscillations, the present calculations are expected to yield the same
results as obtained from classical linear theory. It is to be noted that classical

linear theory uses a semi-analytical formulation and the solutions show singular

behavior near the leading edge. This feature is not completely captured by the

relatively coarse 41 x21 grid used in the present calculations. This may account for

some of the differences observed between the results. Figure 3 shows the moment

coefficient for the plunging motion. Figures 4 and 5 show the lift and moment

coefficients due to pitching about midchord; the amplitude of pitching oscillations

used in the calculations is ao = 0.2 ° and 210 time steps/cycle of oscillation are used.

In all the above results, the agreement between the HO method and the IC method

is extremely good. The agreement between the present results and those from

classical linear theory ranges from fair to good.
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Figure 6 shows the time-variation of the displacement and the resulting lift on
all the blades of a 8-blade cascade of fiat plates for use in the PR method. The grid

and the time step used are the same as those used in the previous calculations
with the HO method and the IC method. The motion of blade 5 is shown as a

function of time; the other blades in the cascade remain stationary. The

maximum displacement during the pulse is ho/c = 0.002 and the duration of the

pulse is t,_ax = 20_. The lift on all blades is shown separately. As can be seen, the

calculations are continued until all responses have returned to the initial

undisturbed values. For the present calculation, the initial and final response

levels correspond to zero lift since the airfoils are fiat plates. If the calculations

are for a configuration which has a non-zero value of steady state lift, then
similar variations wili be obtained for the unsteady component of the lift

(instantaneous lift minus steady lift). The time histories are Fourier transformed

and combined according to Equati0n (14) to obtain the influence coefficients

(QN-k,0) which are combined according to Equation (10) to get the harmonic

coefficients.

Figure 7 shows the lift due to plunging obtained by applying the PR method
and the IC method to the time histories of Figure 6. The solid lines are results

from the PR+IC method and the open symbols represent results from the HO
method. Results from classical linear theory are also shown for comparison. The

agreement between the PR+IC method and the HO method is very good. This
substantiates the validity of the PR method used in combination with the IC

method. It also implicitly confirms the linearity of the unsteady problem which

permits the use of the Duhamel superposition integral and the influence
coefficient approach. The agreement between the present calculations and the
results from classical linear theory is also quite good except at values of reduced

frequency near the point of acoustic resonance. The comments made earlier

regarding the singularity near the leading edge and the limitations of the grid

used in the present study can be applied to account for some of the observed

discrepancy. Figures 8-10 show the variation of the remaining coefficients for the
same cascade and flow condition. As before, the agreement between the PR+IC

method and the HO method is very good and the agreement between the present
results and those from classical linear theory varies from fair to good.

All the computations described here were performed on a CRAY X-MP

computer. The calculations performed using the HO method required about 160

CPU seconds for the case of pitching motion with kc-l.0 and _=45 °.

Approximately the same amount of time was required for the corresponding

calculations using the IC method with kc=l.0 which gave results for

o'_-0°, 45 °, 90 °,...,315 °. The calculation of the time histories in the PR method

required about 230 CPU seconds; the additional time required for calculating

Fourier transforms was quite small and was not recorded.
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Calculation of Flutter Boundaries

Flutter results are presented for two examples. The first example is a single-

degree-of-freedom (pitching) system that has been previously considered in

References 2 and 12. The cascade has nine blades, a stagger angle of {_-45 °, a gap-

to-chord ratio of g/c-l.O and the elastic axis is located at the leading edge

(ah=-1.0). The stability of this system can be inferred entirely from the imaginary

part of the moment coefficient, Im{/a a }.Flutter occurs if Im{la a }_ 0 in which

case the oscillating cascade extracts energy from the fluid stream. Figure 11

shows the moment coefficient (real and imaginary parts) at the different values of

interblade phase angle that may arise at flutter (Equation (5)).The results are for

an inlet Mach number of Mo_=0.5 and a reduced frequency of kc=0.222.

Calculations have been performed on three different grids with 41 x21, 81 x41, and

121 x61 points in each interblade passage; the number of grid points on each airfoil

surface (upper and lower) is 21, 41 and 61, respectively. The results from classical

linear theory are included for comparison.

It can be seen from Figure 11 that a uniform refinement of the grid spacing by

a factor of 3 results only in small changes in the value of the moment coefficient.

Some discrepancy is also observed between the present results and the results

obtained from classical linear theory; this difference is not always reduced by grid

refinement. This indicates that some other cause exists for the observed

discrepancy. Efforts are currently underway to resolve this difficulty; no

explanation is offered at present. It should be noted that observed difference
cannot be attributed to the use of the PR method or the IC method since these have

been validated by comparison with the HO method.

For the calculations performed using the 41 x21 grid, a reduced frequency of

kc=0.222 results in neutral stability CIm{laa } = 0) of the offi320 ° aeroelastic mode

with all other modes being stable (Im{laa } < 0); this result was obtained after

calculating the coefficient laa at different values of reduced frequency and

interblade phase angle. Thus, the reduced frequency at flutter is kcf-=0.222 and the

phase angle at flutter is crf=320 °. The corresponding results from classical linear

theory are kef=0.254 and _f=320 °. Similar calculations have been performed for

other values of the inlet Mach number between 0.2 and 0.8 using a 81 x41 grid in

each interblade passage. Figure 12 shows the variation of flutter reduced

frequency with Mach number. It can be seen that the reduced frequency at flutter

increases with the inlet Mach number with a levelling-off at the higher values of

Mach number. In addition to the flat plate airfoil, results are also shown for a
double-circular-arc airfoil with thickness-to-chord ratio of 0.05 (5% DCA airfoil).

These calculations have also been performed with a 81 x41 grid in each interblade

passage. In the present example, the effect of thickness is to increase the flutter

reduced frequency at all the values of inlet Mach number. The interblade phase

angle at flutter was found to be _rf=320 ° for all the results shown.
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The second example for which flutter calculations have been performed

consists of a 5-blade cascade in which the typical section has two degrees-of-

freedom. This example has been previously considered in Reference 2; the

geometric and structural parameters in this example are representative of the

SR5 propfan 13. The cascade stagger angle is 0=10.7 ° and the gap-to-chord ratio is

g/c=1.85. The airfoil section is from a NACA 16 series with a thickness-to-chord

ratio of 0.03 and a design lift coefficient .of 0.3; this airfoil, which is taken from the

three-quarter span location of the SR5 propfan, is hereai_er referred to as the SR5

airfoil. The structural model for each blade is a two-degrees-of-freedom typical

section with elastic axis at the leading edge (ah--l.O). The mass ratio is/_=115, the

radius of gyration is ra _1.076, the offset between elastic axis and center of mass is

Xa _0.964 and the ratio of uncoupled natural frequencies in bending and torsion is

wh/wa _0.567.

The following procedure has been used in the calculations. For each value of

interblade phase angle obtained from Equation (5), the reduced frequency is varied

until one of the two eigenvalues of Equation (7) displays neutral stability (g=0)

while the other eigenvalue displays stability (_0). The reduced frequency thus

obtained (kcf) is shown in Figure 13 for a fiat plate airfoil. Calculations have been

done using three different grids with 41 x38, 61 x57, and 81 x75 points in each ofthe

five interblade passages; the number of grid points on each airfoil surface (upper

and lower) is 21, 31 and 41, respecti,eely. Results from classical linear theory are

included for comparison. It can be seen that reducing the grid spacing by a factor

of 2 does not result in much change in the reduced frequency at flutter. Figure 14

shows the flutter reduced velocity for the same case. It can be seen that the lowest

flutter reduced velocity occurs at o=288 ° and this is identified as the critical phase

angle. The corresponding flutter reduced velocity is V*f- 7.82 for the 41x38 grid,

V*f ffi 7.71 for the 61 x57 grid and V*f ffi 7.63 for the 81 _75 grid; the result from

classical linear theory is V*f- 7.01.

Similar calculations have been performed for values of inlet Mach number

between 0.2 and 0.8; a 61_57 grid is used. Calculations are done for a flat plate

airfoil and the SR5 airfoil.The results are presented in Figures 15 and 16 as

variations of flutter reduced velocity (V'f) and flutter frequency ratio (wf/wa) with

Mach number. Figure 15 shows that the flutter reduced velocity decreases with

increasing Mach number for both the flat plate airfoil and the SR5 airfoil;the

variation is seen to be almost linear. Figure 16 shows that the flutter frequency

ratio also decreases with increasing Mach number. It is noted that there is only a

marginal difference between the results for the flat plate and the SR5 airfoil.

However, itmay be recalled that the SR5 airfoilhas a small camber angle, a small

thickness-to-chord ratio of 0.03 and the cascade gap-to-chord ratio is large

(g/c=1.85). Therefore, it may be concluded that there is not much steady flow

deflection for this case and consequently the flutter results do not show much

difference between the flatplate airfoiland the SR5 airfoil.
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CONCLUDING REMARKS

Two methods of calculating (linear) frequency domain unsteady aerodynamic

coefficients from a time-marching full-potential solver have been developed and

verified. The first method, the Influence Coefficient method, allows coefficients

for different interblade phase angles to be calculated simultaneously. The second

method, the Pulse Response method, _llows coefficients for several oscillation

frequencies to be calculated from the same transient response. When these two
methods are combined, the aerodynamic coefficients for several combinations of

phase angles and frequencies can be calculated at approximately the

computational cost required for the calculation of a single phase angle and single
frequency using the Harmonic Oscillation method. These methods have been
verified individually and in combination by comparison with the Harmonic

Oscillation method. For small amplitudes of motion, the unsteady flow problem is

linear and therefore these methods give accurate results, as expected.

Flutter calculations have been performed for two examples. The first example

has only pitching degree of freedom. Calculations have been done over a range of

subsonic Mach numbers using a flat plate airfoil and a 5% thick double-circular-
arc airfoil. For both airfoils, the flutter reduced frequency is seen to increase with

Mach number and the effect of airfoil thickness is to increase the flutter reduced

frequency. The results obtained from the present calculations with a fiat plate

airfoil show some differences when compared with the results from the classical

linear theory. These differences are not eliminated by grid refinement indicating
that some other cause contributes to this discrepancy. However, there is no

indication that the problem lies in the use of either the Influence Coefficient

method or Pulse Response method.

The second example for which flutter calculations have been performed is a

two-degree-of-freedom system with geometric and structural parameters

representative of the SR5 propfan. Once again, calculations have been performed

over a subsonic range of Mach numbers. The flutter reduced velocity and the

flutter frequency ratio are seen to decrease continuously with increasing Mach
number; the decrease in flutter reduced velocity is almost linear with Mach
number. The difference between the results for the flat plate and the SR5 airfoil

are negligible. It is inferred that the combination of large gap-to-chord ratio,
small thickness-to-chord ratio and small camber angle results in very little mean

flow deflection and consequently there is very little change in the unsteady

aerodynamic behavior due to the addition of loading.

The present approach allows a unified analysis capability in which both time

domain and frequency domain flutter calculations can be performed using the

same time-marching algorithm. This will allow a direct comparison of results
from linear and nonlinear flutter analyses without concern for differences in CFD

algorithms, grids and other purely numerical factors. The computational
efficiency that is provided by these methods will allow flutter calculations to be

done more routinely than was previously possible with the Harmonic Oscillation

method. The methods implemented here on a full-potential solver can just as

19



easily be applied to other time-marching analyses, such as those based on the

Euler equations. Although the present work has been restricted to subsonic Mach
numbers, transonic flow calculations can also be performed using the same

methods.
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Figure Ib: Cascade geometry and schematic of H-type grid.
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Figure 13: Variation of flutter reduced frequency with interblade phase angle,
example 2.

3_



o_

4_

,i25 , , , ,

2O

15

I0

5

0

5-blade cascade

fiat plate airfoils
stagger angle = 10.7 °
gap/chord ratio = 1.85

Mach number = 0.5

@ 41x38 grid

[] 61x57 grid

A 81x75 grid

• linear [4]

unstable

stable

I I I I

0 72 144 216 288 360

interblade phase angle, a (deg.)
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Figure 15: Variation of flutter reduced velocity with Mach number, example 2.
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